Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36835019

RESUMO

Dopamine is present in a subgroup of neurons that are vital for normal brain functioning. Disruption of the dopaminergic system, e.g., by chemical compounds, contributes to the development of Parkinson's disease and potentially some neurodevelopmental disorders. Current test guidelines for chemical safety assessment do not include specific endpoints for dopamine disruption. Therefore, there is a need for the human-relevant assessment of (developmental) neurotoxicity related to dopamine disruption. The aim of this study was to determine the biological domain related to dopaminergic neurons of a human stem cell-based in vitro test, the human neural progenitor test (hNPT). Neural progenitor cells were differentiated in a neuron-astrocyte co-culture for 70 days, and dopamine-related gene and protein expression was investigated. Expression of genes specific for dopaminergic differentiation and functioning, such as LMX1B, NURR1, TH, SLC6A3, and KCNJ6, were increasing by day 14. From day 42, a network of neurons expressing the catecholamine marker TH and the dopaminergic markers VMAT2 and DAT was present. These results confirm stable gene and protein expression of dopaminergic markers in hNPT. Further characterization and chemical testing are needed to investigate if the model might be relevant in a testing strategy to test the neurotoxicity of the dopaminergic system.


Assuntos
Neurônios Dopaminérgicos , Células-Tronco Neurais , Humanos , Neurônios Dopaminérgicos/metabolismo , Dopamina/metabolismo , Técnicas de Cocultura , Astrócitos/metabolismo , Diferenciação Celular/fisiologia , Células-Tronco Neurais/metabolismo
2.
Bioorg Med Chem Lett ; 52: 128406, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34624491

RESUMO

Epidermal growth factor receptor (EGFR) inhibitors have clinical utility in the treatment of non-small cell lung cancer (NSCLC) patients. Despite encouraging clinical efficacy with these agents, many patients develop resistance due to sensitizing (or activating) mutations ultimately leading to disease progression. In the majority of the cases, this resistance is due to the T790M mutation and frequently coexisting L858R. In addition, EGFR wild type receptor inhibition can lead to on target related dose limiting toxicities such as rash and diarrhea. We describe herein the identification of a mutant selective lead compound 12, an irreversible covalent inhibitor of EGFR T790M/L858R resistance mutations with selectivity over the wild type form. Significant tumor growth inhibition in preclinical models was observed with this lead.


Assuntos
Acrilamidas/farmacologia , Afatinib/farmacologia , Compostos de Anilina/farmacologia , Descoberta de Drogas , Inibidores de Proteínas Quinases/farmacologia , Acrilamidas/química , Afatinib/química , Compostos de Anilina/química , Relação Dose-Resposta a Droga , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Mutação , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
3.
Toxicol Appl Pharmacol ; 407: 115249, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32979392

RESUMO

The zebrafish embryo toxicity test (ZFET) is a simple medium-throughput test to inform about (sub)acute lethal effects in embryos. Enhanced analysis through morphological and teratological scoring, and through gene expression analysis, detects developmental effects and the underlying toxicological pathways. Altogether, the ZFET may inform about hazard of chemical exposure for embryonal development in humans, as well as for lethal effects in juvenile and adult fish. In this study, we compared the effects within a series of 12 aliphatic alcohols and related carboxylic acid derivatives (ethanol, acetic acid, 2-methoxyethanol, 2-methoxyacetic acid, 2-butoxyethanol, 2-butoxyacetic acid, 2-hydroxyacetic acid, 2-ethylhexan-1-ol, 2-ethylhexanoic acid, valproic acid, 2-aminoethanol, 2-(2-hydroxyethylamino)ethanol) in ZFET and early life stage (ELS, 28d) exposures, and compared ZFET results with existing results of rat developmental studies and LC50s in adult fish. High correlation scores were observed between compound potencies in ZFET with either ELS, LC50 in fish and developmental toxicity in rats, indicating similar potency ranking among the models. Compounds could be mapped to specific pathways in an adverse outcome pathway (AOP) network through morphological scoring and gene expression analysis in ZFET. Similarity of morphological effects and gene expression profiles in pairs of alcohols with their acid metabolites suggested metabolic activation of the parent alcohols, although with additional, metabolite-independent activity independent for ethanol and 2-ethylhexanol. Overall, phenotypical and gene expression analysis with these compounds indicates that the ZFET can potentially contribute to the AOP for developmental effects in rodents, and to predict toxicity of acute and chronic exposure in advanced life stages in fish.


Assuntos
Ácidos Carboxílicos/toxicidade , Embrião não Mamífero/metabolismo , Álcoois Graxos/toxicidade , Peixe-Zebra/metabolismo , Animais , Desenvolvimento Embrionário/efeitos dos fármacos , Etanol/toxicidade , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Hexanóis/toxicidade , Dose Letal Mediana , Gravidez , Ratos , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/crescimento & desenvolvimento
4.
Bioorg Med Chem Lett ; 30(14): 127261, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32527559

RESUMO

Bruton tyrosine kinase (BTK) is an important target in oncology and (auto)immunity. Various BTK inhibitors have been approved or are currently in clinical development. A novel BTK inhibitor series was developed starting with a quinazoline core. Moving from a quinazoline to a quinoline core provided a handle for selectivity for BTK over EGFR and resulted in the identification of potent and selective BTK inhibitors with good potency in human whole blood assay. Furthermore, proof of concept of this series for BTK inhibition was shown in an in vivo mouse model using one of the compounds identified.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Descoberta de Drogas , Inibidores de Proteínas Quinases/farmacologia , Quinolinas/farmacologia , Tirosina Quinase da Agamaglobulinemia/metabolismo , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Quinolinas/química , Relação Estrutura-Atividade
5.
Arch Toxicol ; 94(12): 4173-4196, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32886187

RESUMO

Acrylamide is a suspected human carcinogen formed during high-temperature cooking of starch-rich foods. It is metabolised by cytochrome P450 2E1 to its reactive metabolite glycidamide, which forms pre-mutagenic DNA adducts. Using the human TP53 knock-in (Hupki) mouse embryo fibroblasts (HUFs) immortalisation assay (HIMA), acrylamide- and glycidamide-induced mutagenesis was studied in the tumour suppressor gene TP53. Selected immortalised HUF clones were also subjected to next-generation sequencing to determine mutations across the whole genome. The TP53-mutant frequency after glycidamide exposure (1.1 mM for 24 h, n = 198) was 9% compared with 0% in cultures treated with acrylamide [1.5 (n = 24) or 3 mM (n = 6) for 48 h] and untreated vehicle (water) controls (n = 36). Most glycidamide-induced mutations occurred at adenines with A > T/T > A and A > G/T > C mutations being the most common types. Mutations induced by glycidamide occurred at specific TP53 codons that have also been found to be mutated in human tumours (i.e., breast, ovary, colorectal, and lung) previously associated with acrylamide exposure. The spectrum of TP53 mutations was further reflected by the mutations detected by whole-genome sequencing (WGS) and a distinct WGS mutational signature was found in HUF clones treated with glycidamide that was again characterised by A > G/T > C and A > T/T > A mutations. The WGS mutational signature showed similarities with COSMIC mutational signatures SBS3 and 25 previously found in human tumours (e.g., breast and ovary), while the adenine component was similar to COSMIC SBS4 found mostly in smokers' lung cancer. In contrast, in acrylamide-treated HUF clones, only culture-related background WGS mutational signatures were observed. In summary, the results of the present study suggest that glycidamide may be involved in the development of breast, ovarian, and lung cancer.


Assuntos
Acrilamida/toxicidade , Compostos de Epóxi/toxicidade , Fibroblastos/efeitos dos fármacos , Mutagênese , Mutagênicos/toxicidade , Proteína Supressora de Tumor p53/genética , Animais , Linhagem Celular , Análise Mutacional de DNA , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica , Técnicas de Introdução de Genes , Humanos , Camundongos , Proteína Supressora de Tumor p53/metabolismo , Sequenciamento Completo do Genoma
6.
Crit Rev Toxicol ; 48(6): 500-511, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29745287

RESUMO

Non-genotoxic carcinogens (NGTXCs) do not cause direct DNA damage but induce cancer via other mechanisms. In risk assessment of chemicals and pharmaceuticals, carcinogenic risks are determined using carcinogenicity studies in rodents. With the aim to reduce animal testing, REACH legislation states that carcinogenicity studies are only allowed when specific concerns are present; risk assessment of compounds that are potentially carcinogenic by a non-genotoxic mode of action is usually based on subchronic toxicity studies. Health-based guidance values (HBGVs) of NGTXCs may therefore be based on data from carcinogenicity or subchronic toxicity studies depending on the legal framework that applies. HBGVs are usually derived from No-Observed-Adverse-Effect-Levels (NOAELs). Here, we investigate whether current risk assessment of NGTXCs based on NOAELs is protective against cancer. To answer this question, we estimated Benchmark doses (BMDs) for carcinogenicity data of 44 known NGTXCs. These BMDs were compared to the NOAELs derived from the same carcinogenicity studies, as well as to the NOAELs derived from the associated subchronic studies. The results lead to two main conclusions. First, a NOAEL derived from a subchronic study is similar to a NOAEL based on cancer effects from a carcinogenicity study, supporting the current practice in REACH. Second, both the subchronic and cancer NOAELs are, on average, associated with a cancer risk of around 1% in rodents. This implies that for those chemicals that are potentially carcinogenic in humans, current risk assessment of NGTXCs may not be completely protective against cancer. Our results call for a broader discussion within the scientific community, followed by discussions among risk assessors, policy makers, and other stakeholders as to whether or not the potential cancer risk levels that appear to be associated with currently derived HBGVs of NGXTCs are acceptable.


Assuntos
Testes de Carcinogenicidade/métodos , Carcinógenos/toxicidade , Neoplasias/induzido quimicamente , Animais , Testes de Carcinogenicidade/normas , Dano ao DNA , Feminino , Humanos , Masculino , Nível de Efeito Adverso não Observado , Medição de Risco/métodos , Medição de Risco/normas
7.
Arch Toxicol ; 92(12): 3549-3564, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30288550

RESUMO

The EU-EuroMix project adopted the strategy of the European Food Safety Authority (EFSA) for cumulative risk assessment, which limits the number of chemicals to consider in a mixture to those that induce a specific toxicological phenotype. These so-called cumulative assessment groups (CAGs) are refined at several levels, including the target organ and specific phenotype. Here, we explore the zebrafish embryo as a test model for quantitative evaluation in one such CAG, skeletal malformations, through exposure to test compounds 0-120 hpf and alcian blue cartilage staining at 120 hpf, focusing on the head skeleton. Reference compounds cyproconazole, flusilazole, metam, and thiram induced distinctive phenotypes in the head skeleton between the triazoles and dithiocarbamates. Of many evaluated parameters, the Meckel's-palatoquadrate (M-PQ) angle was selected for further assessment, based on the best combination of a small confidence interval, an intermediate maximal effect size and a gentle slope of the dose-response curve with cyproconazole and metam. Additional test compounds included in the CAG skeletal malformations database were tested for M-PQ effects, and this set was supplemented with compounds associated with craniofacial malformations or cleft palate to accommodate otherwise organized databases. This additional set included hexaconazole, all-trans-retinoic acid, AM580, CD3254, maneb, pyrimethanil, imidacloprid, pirimiphos-methyl, 2,4-dinitrophenol, 5-fluorouracil, 17alpha-ethynylestradiol (EE2), ethanol, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), PCB 126, methylmercury, boric acid, and MEHP. Most of these compounds produced a dose-response for M-PQ effects. Application of the assay in mixture testing was provided by combined exposure to cyproconazole and TCDD through the isobole method, supporting that in this case the combined effect can be modeled through concentration addition.


Assuntos
Desenvolvimento Ósseo/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Testes de Toxicidade/métodos , Animais , Anormalidades Craniofaciais/induzido quimicamente , Relação Dose-Resposta a Droga , Medição de Risco/métodos , Crânio/anormalidades , Crânio/efeitos dos fármacos , Crânio/embriologia , Peixe-Zebra
8.
J Pharmacol Exp Ther ; 363(2): 240-252, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28882879

RESUMO

Several small-molecule Bruton tyrosine kinase (BTK) inhibitors are in development for B cell malignancies and autoimmune disorders, each characterized by distinct potency and selectivity patterns. Herein we describe the pharmacologic characterization of BTK inhibitor acalabrutinib [compound 1, ACP-196 (4-[8-amino-3-[(2S)-1-but-2-ynoylpyrrolidin-2-yl]imidazo[1,5-a]pyrazin-1-yl]-N-(2-pyridyl)benzamide)]. Acalabrutinib possesses a reactive butynamide group that binds covalently to Cys481 in BTK. Relative to the other BTK inhibitors described here, the reduced intrinsic reactivity of acalabrutinib helps to limit inhibition of off-target kinases having cysteine-mediated covalent binding potential. Acalabrutinib demonstrated higher biochemical and cellular selectivity than ibrutinib and spebrutinib (compounds 2 and 3, respectively). Importantly, off-target kinases, such as epidermal growth factor receptor (EGFR) and interleukin 2-inducible T cell kinase (ITK), were not inhibited. Determination of the inhibitory potential of anti-immunoglobulin M-induced CD69 expression in human peripheral blood mononuclear cells and whole blood demonstrated that acalabrutinib is a potent functional BTK inhibitor. In vivo evaluation in mice revealed that acalabrutinib is more potent than ibrutinib and spebrutinib. Preclinical and clinical studies showed that the level and duration of BTK occupancy correlates with in vivo efficacy. Evaluation of the pharmacokinetic properties of acalabrutinib in healthy adult volunteers demonstrated rapid absorption and fast elimination. In these healthy individuals, a single oral dose of 100 mg showed approximately 99% median target coverage at 3 and 12 hours and around 90% at 24 hours in peripheral B cells. In conclusion, acalabrutinib is a BTK inhibitor with key pharmacologic differentiators versus ibrutinib and spebrutinib and is currently being evaluated in clinical trials.


Assuntos
Benzamidas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirazinas/farmacologia , Tirosina Quinase da Agamaglobulinemia , Animais , Benzamidas/química , Relação Dose-Resposta a Droga , Humanos , Células Jurkat , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/enzimologia , Camundongos , Camundongos Endogâmicos BALB C , Inibidores de Proteínas Quinases/química , Proteínas Tirosina Quinases/sangue , Proteínas Tirosina Quinases/metabolismo , Pirazinas/química
9.
Arch Toxicol ; 89(12): 2413-27, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25270620

RESUMO

Alternative methods to detect non-genotoxic carcinogens are urgently needed, as this class of carcinogens goes undetected in the current testing strategy for carcinogenicity under REACH. A complicating factor is that non-genotoxic carcinogens act through several distinctive modes of action, which makes prediction of their carcinogenic property difficult. We have recently demonstrated that gene expression profiling in primary mouse hepatocytes is a useful approach to categorize non-genotoxic carcinogens according to their modes of action. In the current study, we improved the methods used for analysis and added mouse embryonic stem cells as a second in vitro test system, because of their features complementary to hepatocytes. Our approach involved an unsupervised analysis based on the 30 most significantly up- and down-regulated genes per chemical. Mouse embryonic stem cells and primary mouse hepatocytes were exposed to a selected set of chemicals and subsequently subjected to gene expression profiling. We focused on non-genotoxic carcinogens, but also included genotoxic carcinogens and non-carcinogens to test the robustness of this approach. Application of the optimized comparison approach resulted in improved categorization of non-genotoxic carcinogens. Mouse embryonic stem cells were a useful addition, especially for genotoxic substances, but also for detection of non-genotoxic carcinogens that went undetected by primary hepatocytes. The approach presented here is an important step forward to categorize chemicals, especially those that are carcinogenic.


Assuntos
Carcinógenos/toxicidade , Células-Tronco Embrionárias/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Toxicogenética/métodos , Animais , Regulação para Baixo/efeitos dos fármacos , Células-Tronco Embrionárias/patologia , Perfilação da Expressão Gênica , Hepatócitos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutagênicos/toxicidade , Regulação para Cima/efeitos dos fármacos
10.
Arch Toxicol ; 88(4): 1023-34, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24390151

RESUMO

There is a high need to improve the assessment of, especially non-genotoxic, carcinogenic features of chemicals. We therefore explored a toxicogenomics-based approach using genome-wide microRNA and mRNA expression profiles upon short-term exposure in mice. For this, wild-type mice were exposed for seven days to three different classes of chemicals, i.e., four genotoxic carcinogens (GTXC), seven non-genotoxic carcinogens (NGTXC), and five toxic non-carcinogens. Hepatic expression patterns of mRNA and microRNA transcripts were determined after exposure and used to assess the discriminative power of the in vivo transcriptome for GTXC and NGTXC. A final classifier set, discriminative for GTXC and NGTXC, was generated from the transcriptomic data using a tiered approach. This appeared to be a valid approach, since the predictive power of the final classifier set in three different classifier algorithms was very high for the original training set of chemicals. Subsequent validation in an additional set of chemicals revealed that the predictive power for GTXC remained high, in contrast to NGTXC, which appeared to be more troublesome. Our study demonstrated that the in vivo microRNA-ome has less discriminative power to correctly identify (non-)genotoxic carcinogen classes. The results generally indicate that single mRNA transcripts do have the potential to be applied in risk assessment, but that additional (genomic) strategies are necessary to correctly predict the non-genotoxic carcinogenic potential of a chemical.


Assuntos
Carcinógenos/toxicidade , Perfilação da Expressão Gênica , Fígado/efeitos dos fármacos , MicroRNAs/metabolismo , Mutagênicos/toxicidade , RNA Mensageiro/metabolismo , Toxicogenética/métodos , Algoritmos , Animais , Carcinógenos/classificação , Análise Discriminante , Regulação da Expressão Gênica/efeitos dos fármacos , Marcadores Genéticos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutagênicos/classificação , Reprodutibilidade dos Testes , Medição de Risco , Fatores de Tempo
11.
Food Chem Toxicol ; 184: 114432, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176580

RESUMO

BACKGROUND: Human exposure to pesticides is being associated with feminisation for which a decrease of the anogenital distance (AGD) is a sensitive endpoint. Dose addition for the cumulative risk assessment of pesticides in food is considered sufficiently conservative for combinations of compounds with both similar and dissimilar modes of action (MoA). OBJECTIVE: The present study was designed to test the dose addition hypothesis in a binary mixture of endocrine active compounds with a dissimilar mode of action for the endpoint feminisation. METHODS: Compounds were selected from a list of chemicals of which exposure is related to a decrease of the AGD in rats and completed with reference compounds. These chemicals were characterised using specific in vitro transcriptional activation (TA) assays for estrogenic and androgenic properties, leading to a final selection of dienestrol as an ER-agonist and flutamide, linuron, and deltamethrin as AR-antagonists. These compounds were then tested in an in vivo model, i.e. in zebrafish (Danio rerio), using sex ratio in the population as an endpoint in order to confirm their feminising effect and MoA. Ultimately, the fish model was used to test a binary mixture of flutamide and dienestrol. RESULTS: Statistical analysis of the binary mixture of flutamide and dienestrol in the fish sexual development tests (FSDT) with zebrafish supported dose addition.


Assuntos
Disruptores Endócrinos , Perciformes , Praguicidas , Masculino , Animais , Ratos , Humanos , Peixe-Zebra , Flutamida , Dienestrol , Feminização , Desenvolvimento Sexual , Disruptores Endócrinos/toxicidade
12.
NanoImpact ; 31: 100466, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37209722

RESUMO

BACKGROUND: The establishment of reliable and robust in vitro models for hazard assessment, a prerequisite for moving away from animal testing, requires the evaluation of model transferability and reproducibility. Lung models that can be exposed via the air, by means of an air-liquid interface (ALI) are promising in vitro models for evaluating the safety of nanomaterials (NMs) after inhalation exposure. We performed an inter-laboratory comparison study to evaluate the transferability and reproducibility of a lung model consisting of the human bronchial cell line Calu-3 as a monoculture and, to increase the physiologic relevance of the model, also as a co-culture with macrophages (either derived from the THP-1 monocyte cell line or from human blood monocytes). The lung model was exposed to NMs using the VITROCELL® Cloud12 system at physiologically relevant dose levels. RESULTS: Overall, the results of the 7 participating laboratories are quite similar. After exposing Calu-3 alone and Calu-3 co-cultures with macrophages, no effects of lipopolysaccharide (LPS), quartz (DQ12) or titanium dioxide (TiO2) NM-105 particles on the cell viability and barrier integrity were detected. LPS exposure induced moderate cytokine release in the Calu-3 monoculture, albeit not statistically significant in most labs. In the co-culture models, most laboratories showed that LPS can significantly induce cytokine release (IL-6, IL-8 and TNF-α). The exposure to quartz and TiO2 particles did not induce a statistically significant increase in cytokine release in both cell models probably due to our relatively low deposited doses, which were inspired by in vivo dose levels. The intra- and inter-laboratory comparison study indicated acceptable interlaboratory variation for cell viability/toxicity (WST-1, LDH) and transepithelial electrical resistance, and relatively high inter-laboratory variation for cytokine production. CONCLUSION: The transferability and reproducibility of a lung co-culture model and its exposure to aerosolized particles at the ALI were evaluated and recommendations were provided for performing inter-laboratory comparison studies. Although the results are promising, optimizations of the lung model (including more sensitive read-outs) and/or selection of higher deposited doses are needed to enhance its predictive value before it may be taken further towards a possible OECD guideline.


Assuntos
Lipopolissacarídeos , Quartzo , Animais , Humanos , Técnicas de Cocultura , Reprodutibilidade dos Testes , Pulmão , Citocinas
13.
Bioorg Med Chem Lett ; 22(1): 613-8, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22119462

RESUMO

Optimization of our previously described pyrrolopiperidone series led to the identification of a new benzamide sub-series, which exhibits consistently high potency in biochemical and cell-based assays throughout the series. Strong inhibition of LPS-induced production of the cytokine TNFα is coupled to the regulation of HSP27 phosphorylation, indicating that the observed cellular effects result from the inhibition of MK2. X-ray crystallographic and computational analyses provide a rationale for the high potency of the series.


Assuntos
Benzamidas/farmacologia , Química Farmacêutica/métodos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Piperidonas/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Simulação por Computador , Cristalografia por Raios X/métodos , Citocinas/metabolismo , Desenho de Fármacos , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico , Humanos , Modelos Químicos , Chaperonas Moleculares , Fosforilação , Pirróis/química
14.
Arch Toxicol ; 86(11): 1717-27, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22710402

RESUMO

Under REACH, the European Community Regulation on chemicals, the testing strategy for carcinogenicity is based on in vitro and in vivo genotoxicity assays. Given that non-genotoxic carcinogens are negative for genotoxicity and chronic bioassays are no longer regularly performed, this class of carcinogens will go undetected. Therefore, test systems detecting non-genotoxic carcinogens, or even better their modes of action, are required. Here, we investigated whether gene expression profiling in primary hepatocytes can be used to distinguish different modes of action of non-genotoxic carcinogens. For this, primary mouse hepatocytes were exposed to 16 non-genotoxic carcinogens with diverse modes of action. Upon profiling, pathway analysis was performed to obtain insight into the biological relevance of the observed changes in gene expression. Subsequently, both a supervised and an unsupervised comparison approach were applied to recognize the modes of action at the transcriptomic level. These analyses resulted in the detection of three of eight compound classes, that is, peroxisome proliferators, metalloids and skin tumor promotors. In conclusion, gene expression profiles in primary hepatocytes, at least in rodent hepatocytes, appear to be useful to detect some, certainly not all, modes of action of non-genotoxic carcinogens.


Assuntos
Carcinógenos/toxicidade , Perfilação da Expressão Gênica , Hepatócitos/efeitos dos fármacos , Testes de Toxicidade/métodos , Animais , Carcinógenos/administração & dosagem , Carcinógenos/metabolismo , Carcinógenos/farmacologia , Células Cultivadas , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutagênicos/toxicidade
15.
Environ Health Perspect ; 130(4): 47003, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35394809

RESUMO

BACKGROUND: Humans are exposed to combinations of chemicals. In cumulative risk assessment (CRA), regulatory bodies such as the European Food Safety Authority consider dose addition as a default and sufficiently conservative approach. The principle of dose addition was confirmed previously for inducing craniofacial malformations in zebrafish embryos in binary mixtures of chemicals with either similar or dissimilar modes of action (MOAs). OBJECTIVES: In this study, we explored a workflow to select and experimentally test multiple compounds as a complex mixture with each of the compounds at or below its no observed adverse effect level (NOAEL), in the same zebrafish embryo model. METHODS: Selection of candidate compounds that potentially induce craniofacial malformations was done using in silico methods-structural similarity, molecular docking, and quantitative structure-activity relationships-applied to a database of chemicals relevant for oral exposure in humans via food (EuroMix inventory, n=1,598). A final subselection was made manually to represent different regulatory fields (e.g., food additives, industrial chemicals, plant protection products), different chemical families, and different MOAs. RESULTS: A final selection of eight compounds was examined in the zebrafish embryo model, and craniofacial malformations were observed in embryos exposed to each of the compounds, thus confirming the developmental toxicity as predicted by the in silico methods. When exposed to a mixture of the eight compounds, each at its NOAEL, substantial craniofacial malformations were observed; according to a dose-response analysis, even embryos exposed to a 7-fold dilution of this mixture still exhibited a slight abnormal phenotype. The cumulative effect of the compounds in the mixture was in accordance with dose addition (added doses of the individual compounds after adjustment for relative potencies), despite different MOAs of the compounds involved. DISCUSSION: This case study of a complex mixture inducing craniofacial malformations in zebrafish embryos shows that dose addition can adequately predicted the cumulative effect of a mixture of multiple substances at low doses, irrespective of the (expected) MOA. The applied workflow may be useful as an approach for CRA in general. https://doi.org/10.1289/EHP9888.


Assuntos
Misturas Complexas , Peixe-Zebra , Animais , Alimentos , Humanos , Simulação de Acoplamento Molecular , Medição de Risco
16.
NanoImpact ; 28: 100439, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36402283

RESUMO

Air-liquid interface (ALI) lung cell models cultured on permeable transwell inserts are increasingly used for respiratory hazard assessment requiring controlled aerosolization and deposition of any material on ALI cells. The approach presented herein aimed to assess the transwell insert-delivered dose of aerosolized materials using the VITROCELL® Cloud12 system, a commercially available aerosol-cell exposure system. An inter-laboratory comparison study was conducted with seven European partners having different levels of experience with the VITROCELL® Cloud12. A standard operating procedure (SOP) was developed and applied by all partners for aerosolized delivery of materials, i.e., a water-soluble molecular substance (fluorescence-spiked salt) and two poorly soluble particles, crystalline silica quartz (DQ12) and titanium dioxide nanoparticles (TiO2 NM-105). The material dose delivered to transwell inserts was quantified with spectrofluorometry (fluorescein) and with the quartz crystal microbalance (QCM) integrated in the VITROCELL® Cloud12 system. The shape and agglomeration state of the deposited particles were confirmed with transmission electron microscopy (TEM). Inter-laboratory comparison of the device-specific performance was conducted in two steps, first for molecular substances (fluorescein-spiked salt), and then for particles. Device- and/or handling-specific differences in aerosol deposition of VITROCELL® Cloud12 systems were characterized in terms of the so-called deposition factor (DF), which allows for prediction of the transwell insert-deposited particle dose from the particle concentration in the aerosolized suspension. Albeit DF varied between the different labs from 0.39 to 0.87 (mean (coefficient of variation (CV)): 0.64 (28%)), the QCM of each VITROCELL® Cloud 12 system accurately measured the respective transwell insert-deposited dose. Aerosolized delivery of DQ12 and TiO2 NM-105 particles showed good linearity (R2 > 0.95) between particle concentration of the aerosolized suspension and QCM-determined insert-delivered particle dose. The VITROCELL® Cloud 12 performance for DQ12 particles was identical to that for fluorescein-spiked salt, i.e., the ratio of measured and salt-predicted dose was 1.0 (29%). On the other hand, a ca. 2-fold reduced dose was observed for TiO2 NM-105 (0.54 (41%)), which was likely due to partial retention of TiO2 NM-105 agglomerates in the vibrating mesh nebulizer of the VITROCELL® Cloud12. This inter-laboratory comparison demonstrates that the QCM integrated in the VITROCELL® Cloud 12 is a reliable tool for dosimetry, which accounts for potential variations of the transwell insert-delivered dose due to device-, handling- and/or material-specific effects. With the detailed protocol presented herein, all seven partner laboratories were able to demonstrate dose-controlled aerosolization of material suspensions using the VITROCELL® Cloud12 exposure system at dose levels relevant for observing in vitro hazard responses. This is an important step towards regulatory approved implementation of ALI lung cell cultures for in vitro hazard assessment of aerosolized materials.


Assuntos
Extremidade Superior , Fluoresceína , Correlação de Dados
17.
Bioorg Med Chem Lett ; 21(12): 3823-7, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21565498

RESUMO

The identification of a potent, selective, and orally available MK2 inhibitor series is described. The initial absence of oral bioavailability was successfully tackled by moving the basic nitrogen of the spiro-4-piperidyl moiety towards the electron-deficient pyrrolepyridinedione core, thereby reducing the pK(a) and improving Caco-2 permeability. The resulting racemic spiro-3-piperidyl analogues were separated by chiral preparative HPLC, and the activity towards MK2 inhibition was shown to reside mostly in the first eluting stereoisomer. This led to the identification of new MK2 inhibitors, such as (S)-23, with low nanomolar biochemical inhibition (EC(50) 7.4 nM) and submicromolar cellular target engagement activity (EC(50) 0.5 µM).


Assuntos
Descoberta de Drogas , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Piperidinas/síntese química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Compostos de Espiro/síntese química , Administração Oral , Animais , Ligação Competitiva , Disponibilidade Biológica , Células CACO-2 , Cromatografia Líquida de Alta Pressão , Cristalografia por Raios X , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Peptídeos e Proteínas de Sinalização Intracelular/química , Estrutura Molecular , Piperidinas/química , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/química , Ratos , Compostos de Espiro/química , Compostos de Espiro/farmacologia , Estereoisomerismo , Relação Estrutura-Atividade , Especificidade por Substrato
18.
Environ Mol Mutagen ; 62(4): 252-264, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33620775

RESUMO

TP53 harbors somatic mutations in more than half of human tumors with some showing characteristic mutation spectra that have been linked to environmental exposures. In bladder cancer, a unique distribution of mutations amongst several codons of TP53 has been hypothesized to be caused by environmental carcinogens including 4-aminobiphenyl (4-ABP). 4-ABP undergoes metabolic activation to N-hydroxy-4-aminobiphenyl (N-OH-4-ABP) and forms pre-mutagenic adducts in DNA, of which N-(deoxyguanosin-8-yl)-4-ABP (dG-C8-4-ABP) is the major one. Human TP53 knock-in mouse embryo fibroblasts (HUFs) are a useful model to study the influence of environmental carcinogens on TP53-mutagenesis. By performing the HUF immortalization assay (HIMA) TP53-mutant HUFs are generated and mutations can be identified by sequencing. Here we studied the induction of mutations in human TP53 after treatment of primary HUFs with N-OH-4-ABP. In addition, mutagenicity in the bacterial lacZ reporter gene and the formation of dG-C8-4-ABP, measured by 32 P-postlabelling analysis, were determined in N-OH-4-ABP-treated primary HUFs. A total of 6% TP53-mutants were identified after treatment with 40 µM N-OH-4-ABP for 24 hr (n = 150) with G>C/C>G transversion being the main mutation type. The mutation spectrum found in the TP53 gene of immortalized N-OH-4-ABP-treated HUFs was unlike the one found in human bladder cancer. DNA adduct formation (~40 adducts/108 nucleotides) was detected after 24 hr treatment with 40 µM N-OH-4-ABP, but lacZ mutagenicity was not observed. Adduct levels decreased substantially (sixfold) after a 24 hr recovery period indicating that primary HUFs can efficiently repair the dG-C8-4-ABP adduct possibly before mutations are fixed. In conclusion, the observed difference in the N-OH-4-ABP-induced TP53 mutation spectrum to that observed in human bladder tumors do not support a role of 4-ABP in human bladder cancer development.


Assuntos
Compostos de Aminobifenil/toxicidade , Adutos de DNA , Dano ao DNA , Mutagênese , Mutagênicos/toxicidade , Mutação , Proteína Supressora de Tumor p53/genética , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
19.
Food Chem Toxicol ; 147: 111855, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33189884

RESUMO

2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a possible human carcinogen formed in cooked fish and meat. PhIP is bioactivated by cytochrome P450 enzymes to form 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine (N-OH-PhIP), a genotoxic metabolite that reacts with DNA leading to the mutation-prone DNA adduct N-(deoxyguanosin-8-yl)-PhIP (dG-C8-PhIP). Here, we studied N-OH-PhIP-induced whole genome mutagenesis in human TP53 knock-in (Hupki) mouse embryo fibroblasts (HUFs) immortalised and subjected to whole genome sequencing (WGS). In addition, mutagenicity of N-OH-PhIP in TP53 and the lacZ reporter gene were assessed. TP53 mutant frequency in HUF cultures treated with N-OH-PhIP (2.5 µM for 24 h, n = 90) was 10% while no TP53 mutations were found in untreated controls (DMSO for 24 h, n = 6). All N-OH-PhIP-induced TP53 mutations occurred at G:C base pairs with G > T/C > A transversions accounting for 58% of them. TP53 mutations characteristic of those induced by N-OH-PhIP have been found in human tumours including breast and colorectal, which are cancer types that have been associated with PhIP exposure. LacZ mutant frequency increased 25-fold at 5 µM N-OH-PHIP and up to ~350 dG-C8-PhIP adducts/108 nucleosides were detected by ultra-performance liquid chromatography-electrospray ionisation multistage scan mass spectrometry (UPLC-ESI-MS3) at this concentration. In addition, a WGS mutational signature defined by G > T/C > A transversions was present in N-OH-PhIP-treated immortalised clones, which showed similarity to COSMIC SBS4, 18 and 29 signatures found in human tumours.


Assuntos
Fibroblastos/efeitos dos fármacos , Imidazóis/toxicidade , Piridinas/toxicidade , Proteína Supressora de Tumor p53/metabolismo , Animais , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Técnicas de Introdução de Genes , Humanos , Camundongos , Testes de Mutagenicidade , Proteína Supressora de Tumor p53/genética
20.
Artigo em Inglês | MEDLINE | ID: mdl-34206423

RESUMO

Humans are exposed daily to complex mixtures of chemical substances via food intake, inhalation, and dermal contact. Developmental neurotoxicity is an understudied area and entails one of the most complex areas in toxicology. Animal studies for developmental neurotoxicity (DNT) are hardly performed in the context of regular hazard studies, as they are costly and time consuming and provide only limited information as to human relevance. There is a need for a combination of in vitro and in silico tests for the assessment of chemically induced DNT in humans. The zebrafish (Danio rerio) embryo (ZFE) provides a powerful model to study DNT because it shows fast neurodevelopment with a large resemblance to the higher vertebrate, including the human system. One of the suitable readouts for DNT testing in the zebrafish is neurobehaviour (stimulus-provoked locomotion) since this provides integrated information on the functionality and status of the entire nervous system of the embryo. In the current study, environmentally relevant pharmaceuticals and their mixtures were investigated using the zebrafish light-dark transition test. Zebrafish embryos were exposed to three neuroactive compounds of concern, carbamazepine (CBZ), fluoxetine (FLX), and venlafaxine (VNX), as well as their main metabolites, carbamazepine 10,11-epoxide (CBZ 10,11E), norfluoxetine (norFLX), and desvenlafaxine (desVNX). All the studied compounds, except CBZ 10,11E, dose-dependently inhibited zebrafish locomotor activity, providing a distinct behavioural phenotype. Mixture experiments with these pharmaceuticals identified that dose addition was confirmed for all the studied binary mixtures (CBZ-FLX, CBZ-VNX, and VNX-FLX), thereby supporting the zebrafish embryo as a model for studying the cumulative effect of chemical mixtures in DNT. This study shows that pharmaceuticals and a mixture thereof affect locomotor activity in zebrafish. The test is directly applicable in environmental risk assessment; however, further studies are required to assess the relevance of these findings for developmental neurotoxicity in humans.


Assuntos
Síndromes Neurotóxicas , Preparações Farmacêuticas , Poluentes Químicos da Água , Animais , Escala de Avaliação Comportamental , Embrião não Mamífero , Humanos , Síndromes Neurotóxicas/etiologia , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA