Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Small ; 20(31): e2307709, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38438885

RESUMO

The activation of the host adaptive immune system is crucial for eliminating viruses. However, influenza infection often suppresses the innate immune response that precedes adaptive immunity, and the adaptive immune responses are typically delayed. Dendritic cells, serving as professional antigen-presenting cells, have a vital role in initiating the adaptive immune response. In this study, an immuno-stimulating antiviral system (ISAS) is introduced, which is composed of the immuno-stimulating adjuvant lipopeptide Pam3CSK4 that acts as a scaffold onto which it is covalently bound 3 to 4 influenza-inhibiting peptides. The multivalent display of peptides on the scaffold leads to a potent inhibition against H1N1 (EC50 = 20 nM). Importantly, the resulting lipopeptide, Pam3FDA, shows an irreversible inhibition mechanism. The chemical modification of peptides on the scaffold maintains Pam3CSK4's ability to stimulate dendritic cell maturation, thereby rendering Pam3FDA a unique antiviral. This is attributed to its immune activation capability, which also acts in synergy to expedite viral elimination.


Assuntos
Células Dendríticas , Lipopeptídeos , Lipopeptídeos/química , Lipopeptídeos/farmacologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Células Dendríticas/imunologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/imunologia , Antivirais/farmacologia , Antivirais/química , Humanos , Animais
2.
Biomed Pharmacother ; 163: 114825, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37148860

RESUMO

Over the last century, the number of epidemics caused by RNA viruses has increased and the current SARS-CoV-2 pandemic has taught us about the compelling need for ready-to-use broad-spectrum antivirals. In this scenario, natural products stand out as a major historical source of drugs. We analyzed the antiviral effect of 4 stilbene dimers [1 (trans-δ-viniferin); 2 (11',13'-di-O-methyl-trans-δ-viniferin), 3 (11,13-di-O-methyl-trans-δ-viniferin); and 4 (11,13,11',13'-tetra-O-methyl-trans-δ-viniferin)] obtained from plant substrates using chemoenzymatic synthesis against a panel of enveloped viruses. We report that compounds 2 and 3 display a broad-spectrum antiviral activity, being able to effectively inhibit several strains of Influenza Viruses (IV), SARS-CoV-2 Delta and, to some extent, Herpes Simplex Virus 2 (HSV-2). Interestingly, the mechanism of action differs for each virus. We observed both a direct virucidal and a cell-mediated effect against IV, with a high barrier to antiviral resistance; a restricted cell-mediated mechanism of action against SARS-CoV-2 Delta and a direct virustatic activity against HSV-2. Of note, while the effect was lost against IV in tissue culture models of human airway epithelia, the antiviral activity was confirmed in this relevant model for SARS-CoV-2 Delta. Our results suggest that stilbene dimer derivatives are good candidate models for the treatment of enveloped virus infections.


Assuntos
COVID-19 , Estilbenos , Vírus , Humanos , Antivirais/uso terapêutico , SARS-CoV-2 , Estilbenos/farmacologia , Herpesvirus Humano 2
3.
Commun Biol ; 5(1): 1075, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36216966

RESUMO

Influenza makes millions of people ill every year, placing a large burden on the healthcare system and the economy. To develop a treatment against influenza, we combined virucidal sialylated cyclodextrins with interferon lambda and demonstrated, in human airway epithelia, that the two compounds inhibit the replication of a clinical H1N1 strain more efficiently when administered together rather than alone. We investigated the mechanism of action of the combined treatment by single cell RNA-sequencing analysis and found that both the single and combined treatments impair viral replication to different extents across distinct epithelial cell types. We showed that each cell type comprises multiple sub-types, whose proportions are altered by H1N1 infection, and assessed the ability of the treatments to restore them. To the best of our knowledge this is the first study investigating the effectiveness of an antiviral therapy against influenza virus by single cell transcriptomic studies.


Assuntos
Ciclodextrinas , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Antivirais/farmacologia , Antivirais/uso terapêutico , Humanos , Influenza Humana/tratamento farmacológico , Influenza Humana/genética , Interferons , RNA
4.
Microorganisms ; 9(6)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34205874

RESUMO

Influenza viruses are a leading cause of morbidity and mortality worldwide. These air-borne pathogens are able to cross the species barrier, leading to regular seasonal epidemics and sporadic pandemics. Influenza viruses also possess a high genetic variability, which allows for the acquisition of resistance mutations to antivirals. Combination therapies with two or more drugs targeting different mechanisms of viral replication have been considered an advantageous option to not only enhance the effectiveness of the individual treatments, but also reduce the likelihood of resistance emergence. Using an in vitro infection model, we assessed the barrier to viral resistance of a combination therapy with the neuraminidase inhibitor oseltamivir and human interferon lambda against the pandemic H1N1 A/Netherlands/602/2009 (H1N1pdm09) virus. We serially passaged the virus in a cell line derived from human bronchial epithelial cells in the presence or absence of increasing concentrations of oseltamivir alone or oseltamivir plus interferon lambda. While the treatment with oseltamivir alone quickly induced the emergence of antiviral resistance through a single mutation in the neuraminidase gene, the co-administration of interferon lambda delayed the emergence of drug-resistant influenza virus variants. Our results suggest a possible clinical application of interferon lambda in combination with oseltamivir to treat influenza.

5.
Sci Rep ; 11(1): 14295, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34253743

RESUMO

Methylene blue is an FDA (Food and Drug Administration) and EMA (European Medicines Agency) approved drug with an excellent safety profile. It displays broad-spectrum virucidal activity in the presence of UV light and has been shown to be effective in inactivating various viruses in blood products prior to transfusions. In addition, its use has been validated for methemoglobinemia and malaria treatment. In this study, we first evaluated the virucidal activity of methylene blue against influenza virus H1N1 upon different incubation times and in the presence or absence of light activation, and then against SARS-CoV-2. We further assessed the therapeutic activity of methylene blue by administering it to cells previously infected with SARS-CoV-2. Finally, we examined the effect of co-administration of the drug together with immune serum. Our findings reveal that methylene blue displays virucidal preventive or therapeutic activity against influenza virus H1N1 and SARS-CoV-2 at low micromolar concentrations and in the absence of UV-activation. We also confirm that MB antiviral activity is based on several mechanisms of action as the extent of genomic RNA degradation is higher in presence of light and after long exposure. Our work supports the interest of testing methylene blue in clinical studies to confirm a preventive and/or therapeutic efficacy against both influenza virus H1N1 and SARS-CoV-2 infections.


Assuntos
Tratamento Farmacológico da COVID-19 , Influenza Humana/tratamento farmacológico , Azul de Metileno/farmacologia , Inativação de Vírus/efeitos dos fármacos , Animais , COVID-19/genética , COVID-19/virologia , Chlorocebus aethiops , Humanos , Influenza Humana/genética , Influenza Humana/virologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade , Raios Ultravioleta/efeitos adversos , Células Vero , Inativação de Vírus/efeitos da radiação , Replicação Viral/efeitos dos fármacos , Replicação Viral/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA