RESUMO
Due to the drastic increase of electricity prosumers, i.e., energy consumers that are also producers, smart grids have become a key solution for electricity infrastructure. In smart grids, one of the most crucial requirements is the privacy of the final users. The vast majority of the literature addresses the privacy issue by providing ways of hiding user's electricity consumption. However, open issues in the literature related to the privacy of the electricity producers still remain. In this paper, we propose a framework that preserves the secrecy of prosumers' identities and provides protection against the traffic analysis attack in a competitive market for energy trade in a Neighborhood Area Network (NAN). In addition, the amount of bidders and of successful bids are hidden from malicious attackers by our framework. Due to the need for small data throughput for the bidders, the communication links of our framework are based on a proprietary communication system. Still, in terms of data security, we adopt the Advanced Encryption Standard (AES) 128 bit with Exclusive-OR (XOR) keys due to their reduced computational complexity, allowing fast processing. Our framework outperforms the state-of-the-art solutions in terms of privacy protection and trading flexibility in a prosumer-to-prosumer design.
RESUMO
Although Global Navigation Satellite Systems (GNSS) receivers currently achieve high accuracy when processing their geographic location under line of sight (LOS), multipath interference and noise degrades the accuracy considerably. In order to mitigate multipath interference, receivers based on multiple antennas became the focus of research and technological development. In this context, tensor-based approaches based on Parallel Factor Analysis (PARAFAC) models have been proposed in the literature, providing optimum performance. State-of-the-art techniques for antenna array based GNSS receivers compute singular value decomposition (SVD) for each new sample, implying into a high computational complexity, being, therefore, prohibitive for real-time applications. Therefore, in order to reduce the computational complexity of the parameter estimates, subspace tracking algorithms are essential. In this work, we propose a tensor-based subspace tracking framework to reduce the overall computational complexity of the highly accurate tensor-based time-delay estimation process.