Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38338863

RESUMO

Phosphorylation plays a key role in Alzheimer's disease (AD) pathogenesis, impacting distinct processes such as amyloid-beta (Aß) peptide production and tau phosphorylation. Impaired phosphorylation events contribute to senile plaques and neurofibrillary tangles' formation, two major histopathological hallmarks of AD. Blood-derived extracellular particles (bdEP) can represent a disease-related source of phosphobiomarker candidates, and hence, in this pilot study, bdEP of Control and AD cases were analyzed by a targeted phosphoproteomics approach using a high-density microarray that featured at least 1145 pan-specific and 913 phosphosite-specific antibodies. This approach, innovatively applied to bdEP, allowed the identification of 150 proteins whose expression levels and/or phosphorylation patterns were significantly altered across AD cases. Gene Ontology enrichment and Reactome pathway analysis unraveled potentially relevant molecular targets and disease-associated pathways, and protein-protein interaction networks were constructed to highlight key targets. The discriminatory value of both the total proteome and the phosphoproteome was evaluated by univariate and multivariate approaches. This pilot experiment supports that bdEP are enriched in phosphotargets relevant in an AD context, holding value as peripheral biomarker candidates for disease diagnosis.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Proteínas tau/metabolismo , Proteoma , Projetos Piloto , Peptídeos beta-Amiloides/metabolismo , Biomarcadores , Emaranhados Neurofibrilares/metabolismo
2.
Proteomics ; 23(15): e2200515, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37062942

RESUMO

Aging is the main risk factor for the appearance of age-related neurodegenerative diseases, including Alzheimer's disease (AD). AD is the most common form of dementia, characterized by the presence of senile plaques (SPs) and neurofibrillary tangles (NFTs), the main histopathological hallmarks in AD brains. The core of these deposits are predominantly amyloid fibrils in SPs and hyperphosphorylated Tau protein in NFTs, but other molecular components can be found associated with these pathological lesions. Herein, an extensive literature review was carried out to obtain the SPs and NFTs proteomes, followed by a bioinformatic analysis and further putative biomarker validation. For SPs, 857 proteins were recovered, and, for NFTs, 627 proteins of which 375 occur in both groups and represent the common proteome. Gene Ontology (GO) enrichment analysis permitted the identification of biological processes and the molecular functions most associated with these lesions. Analysis of the SPs and NFTs common proteins unraveled pathways and molecular targets linking both histopathological events. Further, validation of a putative phosphotarget arising from the in silico analysis was performed in serum-derived extracellular vesicles from AD patients. This bioinformatic approach contributed to the identification of putative molecular targets, valuable for AD diagnostic or therapeutic intervention.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Proteoma/metabolismo , Placa Amiloide/complicações , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Proteínas tau/metabolismo , Encéfalo/metabolismo , Biomarcadores/metabolismo
3.
Cell Mol Life Sci ; 79(2): 101, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35089425

RESUMO

Alzheimer's disease (AD) is the leading cause of dementia worldwide and is characterized by the accumulation of the ß-amyloid peptide (Aß) in the brain, along with profound alterations in phosphorylation-related events and regulatory pathways. The production of the neurotoxic Aß peptide via amyloid precursor protein (APP) proteolysis is a crucial step in AD development. APP is highly expressed in the brain and is complexly metabolized by a series of sequential secretases, commonly denoted the α-, ß-, and γ-cleavages. The toxicity of resulting fragments is a direct consequence of the first cleaving event. ß-secretase (BACE1) induces amyloidogenic cleavages, while α-secretases (ADAM10 and ADAM17) result in less pathological peptides. Hence this first cleavage event is a prime therapeutic target for preventing or reverting initial biochemical events involved in AD. The subsequent cleavage by γ-secretase has a reduced impact on Aß formation but affects the peptides' aggregating capacity. An array of therapeutic strategies are being explored, among them targeting Retinoic Acid (RA) signalling, which has long been associated with neuronal health. Additionally, several studies have described altered RA levels in AD patients, reinforcing RA Receptor (RAR) signalling as a promising therapeutic strategy. In this review we provide a holistic approach focussing on the effects of isoform-specific RAR modulation with respect to APP secretases and discuss its advantages and drawbacks in subcellular AD related events.


Assuntos
Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Receptores do Ácido Retinoico/metabolismo , Proteína ADAM10/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/patologia , Humanos , Proteólise
4.
Cell Mol Life Sci ; 78(21-22): 6807-6822, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34480585

RESUMO

BRI2 is a type II transmembrane protein ubiquitously expressed whose physiological function remains poorly understood. Although several recent important advances have substantially impacted on our understanding of BRI2 biology and function, providing valuable information for further studies on BRI2. These findings have contributed to a better understanding of BRI2 biology and the underlying signaling pathways involved. In turn, these might provide novel insights with respect to neurodegeneration processes inherent to BRI2-related pathologies, namely Familial British and Danish dementias, Alzheimer's disease, ITM2B-related retinal dystrophy, and multiple sclerosis. In this review, we provided a state-of-the-art outline of BRI2 biology, both in physiological and pathological conditions, and discuss the proposed molecular underlying mechanisms. Overall, the BRI2 knowledge here reviewed is of extreme importance and may contribute to propose BRI2 and/or BRI2 proteolytic fragments as novel therapeutic targets for neurodegenerative diseases, such as Alzheimer's disease.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Doença de Alzheimer/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Proteólise , Transdução de Sinais/fisiologia
5.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35008948

RESUMO

Myotonic dystrophy type 1 (DM1) is a hereditary and multisystemic disease characterized by myotonia, progressive distal muscle weakness and atrophy. The molecular mechanisms underlying this disease are still poorly characterized, although there are some hypotheses that envisage to explain the multisystemic features observed in DM1. An emergent hypothesis is that nuclear envelope (NE) dysfunction may contribute to muscular dystrophies, particularly to DM1. Therefore, the main objective of the present study was to evaluate the nuclear profile of DM1 patient-derived and control fibroblasts and to determine the protein levels and subcellular distribution of relevant NE proteins in these cell lines. Our results demonstrated that DM1 patient-derived fibroblasts exhibited altered intracellular protein levels of lamin A/C, LAP1, SUN1, nesprin-1 and nesprin-2 when compared with the control fibroblasts. In addition, the results showed an altered location of these NE proteins accompanied by the presence of nuclear deformations (blebs, lobes and/or invaginations) and an increased number of nuclear inclusions. Regarding the nuclear profile, DM1 patient-derived fibroblasts had a larger nuclear area and a higher number of deformed nuclei and micronuclei than control-derived fibroblasts. These results reinforce the evidence that NE dysfunction is a highly relevant pathological characteristic observed in DM1.


Assuntos
Biomarcadores , Fibroblastos/metabolismo , Membrana Nuclear/metabolismo , Núcleo Celular/metabolismo , Imunofluorescência , Humanos , Espaço Intracelular/metabolismo , Lamina Tipo A/metabolismo , Proteínas de Membrana/metabolismo , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Miotonina Proteína Quinase/metabolismo , Proteínas Nucleares/metabolismo
6.
J Neurochem ; 156(2): 162-181, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32618370

RESUMO

Exosomes are small extracellular vesicles released by almost all cell types in physiological and pathological conditions. The exosomal potential to unravel disease mechanisms, or to be used as a source of biomarkers, is being explored, in particularly in the field of neurodegenerative diseases. Alzheimer's disease (AD) is the most prevalent neurodegenerative disease in the world and exosomes appear to have a relevant role in disease pathogenesis. This review summarizes the current knowledge on exosome contributions to AD as well as their use as disease biomarker resources or therapeutic targets. The most recent findings with respect to both protein and miRNA biomarker candidates for AD, herein described, highlight the state of the art in this field and encourage the use of exosomes derived from biofluids in clinical practice in the near future.


Assuntos
Doença de Alzheimer , Exossomos , Animais , Biomarcadores , Humanos
7.
Int J Mol Sci ; 22(8)2021 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-33920336

RESUMO

The potential of exosomes as biomarker resources for diagnostics and even for therapeutics has intensified research in the field, including in the context of Alzheimer´s disease (AD). The search for disease biomarkers in peripheral biofluids is advancing mainly due to the easy access it offers. In the study presented here, emphasis was given to the bioinformatic identification of putative exosomal candidates for AD. The exosomal proteomes of cerebrospinal fluid (CSF), serum and plasma, were obtained from three databases (ExoCarta, EVpedia and Vesiclepedia), and complemented with additional exosomal proteins already associated with AD but not found in the databases. The final biofluids' proteomes were submitted to gene ontology (GO) enrichment analysis and the exosomal Aß-binding proteins that can constitute putative candidates were identified. Among these candidates, gelsolin, a protein known to be involved in inhibiting Abeta fibril formation, was identified, and it was tested in human samples. The levels of this Aß-binding protein, with anti-amyloidogenic properties, were assessed in serum-derived exosomes isolated from controls and individuals with dementia, including AD cases, and revealed altered expression patterns. Identification of potential peripheral biomarker candidates for AD may be useful, not only for early disease diagnosis but also in drug trials and to monitor disease progression, allowing for a timely therapeutic intervention, which will positively impact the patient's quality of life.


Assuntos
Doença de Alzheimer/sangue , Peptídeos beta-Amiloides/sangue , Simulação por Computador , Bases de Dados de Proteínas , Exossomos/metabolismo , Biomarcadores/sangue , Feminino , Humanos , Masculino
8.
Chemistry ; 26(4): 888-899, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31696989

RESUMO

The anion-binding and transport properties of an extensive library of thiophene-based molecules are reported. Seventeen bis-urea positional isomers, with different binding conformations and lipophilicities, have been synthesized by appending α- or ß-thiophene or α-, ß-, or γ-benzo[b]thiophene moieties to an ortho-phenylenediamine central core, yielding six subsets of positional isomers. Through 1 H NMR, X-ray crystallography, molecular modelling, and anion efflux studies, it is demonstrated that the most active transporters adopt a pre-organized binding conformation capable of promoting the recognition of chloride, using urea and C-H binding groups in a cooperative fashion. Additional large unilamellar vesicle-based assays, carried out under electroneutral and electrogenic conditions, together with N-methyl-d-glucamine chloride assays, have indicated that anion efflux occurs mainly through an H+ /Cl- symport mechanism. On the other hand, the most efficient anion transporter displays cytotoxicity against tumor cell lines, while having no effects on a cystic fibrosis cell line.


Assuntos
Ânions/química , Cloretos/química , Tiofenos/química , Ureia/química , Transporte Biológico , Linhagem Celular Tumoral , Cristalografia por Raios X , Humanos , Transporte de Íons , Espectroscopia de Ressonância Magnética
9.
Microsc Microanal ; 25(1): 229-235, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30714554

RESUMO

Tetraspanins, such as CD81, can form lateral associations with each other and with other transmembrane proteins. These interactions may underlie CD81 functions in multiple cellular processes, such as adhesion, morphology, migration, and differentiation. Since CD81's role in neuronal cells' migration has not been established, we here evaluated effects of CD81 on the migratory phenotype of SH-SY5Y neuroblastoma cells. CD81 was found enriched at SH-SY5Y cell's membrane, co-localizing with its interactor filamentous-actin (F-actin) in migratory relevant structures of the leading edge (filopodia, stress fibers, and adhesion sites). CD81 overexpression increased the number of cells with a migratory phenotype, in a potentially phosphatidylinositol 3 kinase (PI3K)-Ak strain transforming (AKT) mediated manner. Indeed, CD81 also co-localized with AKT, a CD81-interactor and actin remodeling agent, at the inner leaflet of the plasma membrane. Pharmacologic inhibition of PI3K, the canonical AKT activator, led both to a decrease in the acquisition of a migratory phenotype and to a redistribution of intracellular CD81 and F-actin into cytoplasmic agglomerates. These findings suggest that in neuronal-like cells CD81 bridges active AKT and actin, promoting the actin remodeling that leads to a motile cell morphology. Further studies on this CD81-mediated mechanism will improve our knowledge on important physiological and pathological processes such as cell migration and differentiation, and tumor metastasis.


Assuntos
Movimento Celular/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fenótipo , Tetraspanina 28/metabolismo , Tetraspanina 28/farmacologia , Actinas/efeitos dos fármacos , Adesão Celular , Linhagem Celular Tumoral , Membrana Celular , Humanos , Neuroblastoma , Neurônios/patologia , Proteína Oncogênica v-akt , Fosfatidilinositol 3-Quinases/metabolismo , Pseudópodes , Fibras de Estresse
10.
Microsc Microanal ; 25(1): 221-228, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30246678

RESUMO

TorsinA is a member of the AAA+ superfamily of adenosine triphosphatases. These AAA+ proteins have numerous biological functions, including vesicle fusion, cytoskeleton dynamics, intracellular trafficking, protein folding, and degradation as well as organelle biogenesis. Of particular interest is torsinA, which is mainly located in the endoplasmic reticulum (ER) and nuclear envelope (NE). Interestingly, mutations in the TOR1A gene (the gene encoding torsinA) are associated with DYT1 dystonia and with the preferential localization of mutated torsinA at the NE, where it is associated with lamina-associated polypeptide 1. A bioinformatics study of the torsinA interactome revealed reproductive processes to be highly relevant, as proteins in this class were found to interact with the former. Interestingly, the torsin protein family had never been previously described to be associated with the mammalian spermatogenic process. Histological staining of torsinA in human testis tissue revealed a granular cytoplasmic localization in mid- and late spermatocytes. We further sought to understand this newly discovered expression of torsinA in the meiotic phase of human spermatogenesis by studying its specific subcellular distribution. TorsinA is not present in the ER as commonly described. The proposal that torsinA might relocate to the pro-acrosomal vesicles in the Golgi apparatus is discussed.


Assuntos
Chaperonas Moleculares/metabolismo , Transporte Proteico , Espermatogênese/fisiologia , Idoso de 80 Anos ou mais , Animais , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Humanos , Masculino , Chaperonas Moleculares/genética , Mutação , Membrana Nuclear/metabolismo , Neoplasias da Próstata , Testículo/patologia
11.
Magn Reson Chem ; 57(11): 919-933, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31058384

RESUMO

Untargeted nuclear magnetic resonance (NMR) metabolomics was employed, for the first time to our knowledge, to characterize the metabolome of human osteoblast (HOb) cells and extracts in the presence of non-poled or negatively poled poly-L-lactic acid (PLLA). The metabolic response of these cells to this polymer, extensively used in bone regeneration strategies, may potentially translate into useful markers indicative of in vivo biomaterial performance. We present preliminary results of multivariate and univariate analysis of NMR spectra, which have shown the complementarity of lysed cells and extracts in terms of information on cell metabolome, and unveil that, irrespective of poling state, PLLA-grown cells seem to experience enhanced oxidative stress and activated energy metabolism, at the cost of storage lipids and glucose. Possible changes in protein and nucleic acid metabolisms were also suggested, as well as enhanced membrane biosynthesis. Therefore, the presence of PLLA seems to trigger cell catabolism and anti-oxidative protective mechanisms in HOb cells, while directing them towards cellular growth. This was not sufficient, however, to lead to a visible cell proliferation enhancement in the presence of PLLA, although a qualitative tendency for negatively poled PLLA to be more effective in sustaining cell growth than non-poled PLLA was suggested. These preliminary results indicate the potential of NMR metabolomics in enlightening cell metabolism in response to biomaterials and their properties, justifying further studies of the fine effects of poled PLLA on these and other cells of significance in tissue regeneration strategies.


Assuntos
Metabolômica , Osteoblastos/metabolismo , Poliésteres/metabolismo , Proliferação de Células , Humanos , Espectroscopia de Ressonância Magnética , Osteoblastos/citologia , Poliésteres/química
12.
Mol Cell Neurosci ; 85: 57-69, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28847569

RESUMO

Neurons are specialized cells of the Central Nervous System whose function is intricately related to the neuritic network they develop to transmit information. Morphological evaluation of this network and other neuronal structures is required to establish relationships between neuronal morphology and function, and may allow monitoring physiological and pathophysiologic alterations. Fluorescence-based microphotographs are the most widely used in cellular bioimaging, but phase contrast (PhC) microphotographs are easier to obtain, more affordable, and do not require invasive, complicated and disruptive techniques. Despite the various freeware tools available for fluorescence-based images analysis, few exist that can tackle the more elusive and harder-to-analyze PhC images. To surpass this, an interactive semi-automated image processing workflow was developed to easily extract relevant information (e.g. total neuritic length, average cell body area) from both PhC and fluorescence neuronal images. This workflow, named 'NeuronRead', was developed in the form of an ImageJ macro. Its robustness and adaptability were tested and validated on rat cortical primary neurons under control and differentiation inhibitory conditions. Validation included a comparison to manual determinations and to a golden standard freeware tool for fluorescence image analysis. NeuronRead was subsequently applied to PhC images of neurons at distinct differentiation days and exposed or not to DAPT, a pharmacological inhibitor of the γ-secretase enzyme, which cleaves the well-known Alzheimer's amyloid precursor protein (APP) and the Notch receptor. Data obtained confirms a neuritogenic regulatory role for γ-secretase products and validates NeuronRead as a time- and cost-effective useful monitoring tool.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Neurônios/citologia , Animais , Ratos
13.
J Cell Biochem ; 118(9): 2752-2763, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28176357

RESUMO

BRI2 is a ubiquitously expressed type II transmembrane phosphoprotein. BRI2 undergoes proteolytic processing into secreted fragments and during the maturation process it suffers post-translational modifications. Of particular relevance, BRI2 is a protein phosphatase 1 (PP1) interacting protein, where PP1 is able to dephosphorylate the former. Further, disruption of the BRI2:PP1 complex, using BRI2 PP1 binding motif mutants, leads to increased BRI2 phosphorylation levels. However, the physiological function of BRI2 remains elusive; although findings suggest a role in neurite outgrowth and neuronal differentiation. In the work here presented, BRI2 expression during neuronal development was investigated. This increases during neuronal differentiation and an increase in its proteolytic processing is also evident. To elucidate the importance of BRI2 phosphorylation for both proteolytic processing and neuritogenesis, SH-SY5Y cells were transfected with the BRI2 PP1 binding motif mutant constructs. For the first time, it was possible to show that BRI2 phosphorylation is an important regulatory mechanism for its proteolytic processing and its neuritogenic role. Furthermore, by modulating BRI2 processing using an ADAM10 inhibitor, a dual role for BRI2 in neurite outgrowth is suggested: phosphorylated full-length BRI2 appears to be important for the formation of neuritic processes, and BRI2 NTF promotes neurite elongation. This work significantly contributed to the understanding of the physiological function of BRI2 and its regulation by protein phosphorylation. J. Cell. Biochem. 118: 2752-2763, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Diferenciação Celular , Glicoproteínas de Membrana/metabolismo , Complexos Multiproteicos/metabolismo , Neuritos/metabolismo , Processamento de Proteína Pós-Traducional , Proteína ADAM10/antagonistas & inibidores , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Glicoproteínas de Membrana/genética , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/genética , Fosforilação/genética , Proteína Fosfatase 1/genética , Proteólise , Ratos , Ratos Wistar
14.
Dement Geriatr Cogn Disord ; 43(1-2): 15-28, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27907913

RESUMO

BACKGROUND/AIMS: Diagnosing dementia is challenging in many primary care settings, given the limited human resources and the lack of current diagnostic tools. With this in mind, a primary care-based cohort was established in the Aveiro district of Portugal. METHODS: A total of 568 participants were evaluated using cognitive tests and APOE genotyping. RESULTS: The findings revealed a dementia prevalence of 12%. A strong correlation between increasing Clinical Dementia Rating (CDR) scores and education was clearly evident. Other highly relevant risk factors were activities of daily living (ADL), instrumental ADL, aging, depression, gender, the APOE ε4 allele, and comorbidities (depression as well as gastrointestinal, osteoarticular, and neurodegenerative diseases). A hitherto unreported, significant correlation between gastrointestinal disease and high CDR score was clearly observable. CONCLUSIONS: This study shows the merit of carrying out a dementia screening on younger subjects. Significantly, 71 subjects in the age group of 50-65 years were flagged for follow-up studies; furthermore, these cases with a potentially early onset of dementia were identified in a primary care setting.


Assuntos
Transtornos Cognitivos/psicologia , Demência/diagnóstico , Demência/psicologia , Gastroenteropatias/diagnóstico , Gastroenteropatias/psicologia , Atividades Cotidianas , Idoso , Envelhecimento/psicologia , Apolipoproteínas E/genética , Estudos de Coortes , Estudos Transversais , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Portugal , Prevalência , Atenção Primária à Saúde , Desempenho Psicomotor , Fatores de Risco , Fatores Socioeconômicos
15.
J Neurochem ; 134(2): 288-301, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25903790

RESUMO

The existence of an intrinsic programme controlling neuritogenesis and activated during early neuronal differentiation and regeneration stages is well established. However, the identity and role of each molecular player and event, as well as how such a programme is modified by environmental signals, remain a focus of research. The amyloid precursor protein (APP) is a neuromodulator of the developing and mature nervous system, although in a highly complex manner which is far from clear. To study APP-induced neuritogenesis, the retinoic acid (RA)-induced SH-SY5Y cell differentiation model was first minutely characterized in terms of RA dose, morphological outputs and relevant biochemical markers. The findings reported here unveiled two differentiation phases for the 10 µM RA dose: 1-4 (4 days excluded) and 4-8 days, clearly defined by fold increases in the ratio between APP and acetylated Tubulin. Moreover, we describe, for the first time, a unique peak of secreted APP (sAPP)/APP ratio in the first phase. Subsequent APP and sAPP modulations confirmed that a high sAPP/APP ratio potentiates the elongation of smaller processes at the earlier neuritogenic phase. This sAPP/APP ratio drops in the second phase, as holoAPP levels increase to assist the maintenance of the longer neurites, potentially via their stabilization.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Diferenciação Celular/fisiologia , Neurogênese/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Imuno-Histoquímica , Tretinoína/farmacologia
16.
Mol Cell Biochem ; 399(1-2): 143-53, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25323962

RESUMO

Cell division in eukaryotes requires the disassembly of the nuclear envelope (NE) at the beginning of mitosis and its reassembly at the end of mitosis. These processes are complex and involve coordinated steps where NE proteins have a crucial role. Lamina-associated polypeptide 1 (LAP1) is an inner nuclear membrane protein that has been associated with cell cycle events. In support of this role, LAP1 has been implicated in the regulation of the NE reassembly and assembly of the mitotic spindle during mitosis. In this study, we demonstrated that LAP1 intracellular levels vary during the cell cycle in SH-SY5Y cells, and that LAP1 is highly phosphorylated during mitosis. It is also clear that LAP1 co-localized with acetylated α-tubulin in the mitotic spindle and with γ-tubulin in centrosomes (main microtubule organizing center) in mitotic cells. Moreover, LAP1 knockdown resulted in decreased number of mitotic cells and decreased levels of acetylated α-tubulin (marker of microtubules stability) and lamin B1. Additionally, it was possible to determine that LAP1 is important for centrosome positioning near the NE. These findings place LAP1 at a key position to participate in the maintenance of the NE structure and progression of the cell cycle.


Assuntos
Proteínas de Choque Térmico HSC70/fisiologia , Membrana Nuclear/metabolismo , Ciclo Celular , Linhagem Celular , Centrossomo/metabolismo , Humanos , Centro Organizador dos Microtúbulos/metabolismo , Membrana Nuclear/ultraestrutura , Transporte Proteico , Tubulina (Proteína)/metabolismo
17.
J Alzheimers Dis ; 98(3): 1157-1167, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38489187

RESUMO

Background: Alzheimer's disease (AD) diagnosis is difficult, and new accurate tools based on peripheral biofluids are urgently needed. Extracellular vesicles (EVs) emerged as a valuable source of biomarker profiles for AD, since their cargo is disease-specific and these can be easily isolated from easily accessible biofluids, as blood. Fourier Transform Infrared (FTIR) spectroscopy can be employed to analyze EVs and obtain the spectroscopic profiles from different regions of the spectra, simultaneously characterizing carbohydrates, nucleic acids, proteins, and lipids. Objective: The aim of this study was to identify blood-derived EVs (bdEVs) spectroscopic signatures with AD discriminatory potential. Methods: Herein, FTIR spectra of bdEVs from two biofluids (serum and plasma) and distinct sets of Controls and AD cases were acquired, and EVs' spectra analyzed. Results: Analysis of bdEVs second derivative peaks area revealed differences between Controls and AD cases in distinct spectra regions, assigned to carbohydrates and nucleic acids, amides, and lipids. Conclusions: EVs' spectroscopic profiles presented AD discriminatory value, supporting the use of bdEVs combined with FTIR as a screening or complementary tool for AD diagnosis.


Assuntos
Doença de Alzheimer , Vesículas Extracelulares , Ácidos Nucleicos , Humanos , Doença de Alzheimer/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Vesículas Extracelulares/metabolismo , Ácidos Nucleicos/metabolismo , Lipídeos , Carboidratos
18.
BMC Evol Biol ; 13: 242, 2013 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-24195737

RESUMO

BACKGROUND: Pseudogenes are traditionally considered "dead" genes, therefore lacking biological functions. This view has however been challenged during the last decade. This is the case of the Protein phosphatase 1 regulatory subunit 2 (PPP1R2) or inhibitor-2 gene family, for which several incomplete copies exist scattered throughout the genome. RESULTS: In this study, the pseudogenization process of PPP1R2 was analyzed. Ten PPP1R2-related pseudogenes (PPP1R2P1-P10), highly similar to PPP1R2, were retrieved from the human genome assembly present in the databases. The phylogenetic analysis of mammalian PPP1R2 and related pseudogenes suggested that PPP1R2P7 and PPP1R2P9 retroposons appeared before the great mammalian radiation, while the remaining pseudogenes are primate-specific and retroposed at different times during Primate evolution. Although considered inactive, four of these pseudogenes seem to be transcribed and possibly possess biological functions. Given the role of PPP1R2 in sperm motility, the presence of these proteins was assessed in human sperm, and two PPP1R2-related proteins were detected, PPP1R2P3 and PPP1R2P9. Signatures of negative and positive selection were also detected in PPP1R2P9, further suggesting a role as a functional protein. CONCLUSIONS: The results show that contrary to initial observations PPP1R2-related pseudogenes are not simple bystanders of the evolutionary process but may rather be at the origin of genes with novel functions.


Assuntos
Evolução Molecular , Genoma Humano , Filogenia , Proteína Fosfatase 1/genética , Pseudogenes , Animais , Genoma , Humanos , Masculino , Mamíferos/genética , Retroelementos , Motilidade dos Espermatozoides
19.
BMC Cell Biol ; 14: 15, 2013 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-23506001

RESUMO

BACKGROUND: Protein Ser/Thr Phosphatase PPP1CC2 is an alternatively spliced isoform of PPP1C that is highly enriched in testis and selectively expressed in sperm. Addition of the phosphatase inhibitor toxins okadaic acid or calyculin A to caput and caudal sperm triggers and stimulates motility, respectively. Thus, the endogenous mechanisms of phosphatase inhibition are fundamental for controlling sperm function and should be characterized. Preliminary results have shown a protein phosphatase inhibitor activity resembling PPP1R2 in bovine and primate spermatozoa. RESULTS: Here we show conclusively, for the first time, that PPP1R2 is present in sperm. In addition, we have also identified a novel protein, PPP1R2P3. The latter was previously thought to be an intron-less pseudogene. We show that the protein corresponding to the pseudogene is expressed. It has PPP1 inhibitory potency similar to PPP1R2. The potential phosphosites in PPP1R2 are substituted by non-phosphorylable residues, T73P and S87R, in PPP1R2P3. We also confirm that PPP1R2/PPP1R2P3 are phosphorylated at Ser121 and Ser122, and report a novel phosphorylation site, Ser127. Subfractionation of sperm structures show that PPP1CC2, PPP1R2/PPP1R2P3 are located in the head and tail structures. CONCLUSIONS: The conclusive identification and localization of sperm PPP1R2 and PPP1R2P3 lays the basis for future studies on their roles in acrosome reaction, sperm motility and hyperactivation. An intriguing possibility is that a switch in PPP1CC2 inhibitory subunits could be the trigger for sperm motility in the epididymis and/or sperm hyperactivation in the female reproductive tract.


Assuntos
Proteínas/metabolismo , Espermatozoides/metabolismo , Sequência de Aminoácidos , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Masculino , Dados de Sequência Molecular , Fosforilação , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína Fosfatase 1/antagonistas & inibidores , Proteína Fosfatase 1/metabolismo , Proteínas/química , Proteínas/genética , Alinhamento de Sequência , Motilidade dos Espermatozoides , Testículo/metabolismo
20.
Neural Regen Res ; 18(5): 991-995, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36254979

RESUMO

In recent years, multiple disciplines have focused on mitochondrial biology and contributed to understanding its relevance towards adult-onset neurodegenerative disorders. These are complex dynamic organelles that have a variety of functions in ensuring cellular health and homeostasis. The plethora of mitochondrial functionalities confers them an intrinsic susceptibility to internal and external stressors (such as mutation accumulation or environmental toxins), particularly so in long-lived postmitotic cells such as neurons. Thus, it is reasonable to postulate an involvement of mitochondria in aging-associated neurological disorders, notably neurodegenerative pathologies including Alzheimer's disease and Parkinson's disease. On the other hand, biological effects resulting from neurodegeneration can in turn affect mitochondrial health and function, promoting a feedback loop further contributing to the progression of neuronal dysfunction and cellular death. This review examines state-of-the-art knowledge, focus on current research exploring mitochondrial health as a contributing factor to neuroregeneration, and the development of therapeutic approaches aimed at restoring mitochondrial homeostasis in a pathological setting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA