Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38009904

RESUMO

A Gram-stain-positive rod, psychrotolerant, aerobic and bioemulsifier-producing strain, denoted as Val9T, was isolated from soil sampled at Vale Ulman, King George Island, Antarctica. The strain grew at up to 30 °C (optimum, 15 °C), at pH 6-9 (optimum, pH 8) and with up to 5 % w/v NaCl (optimum, 3 %). The strain was motile and positive for catalase, oxidase and H2S. It did not hydrolyse starch, casein or gelatin. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain Val9T belonged to the genus Psychrobacillus and was closely related to Psychrobacillus psychrotolerans DSM 11706T (99.9 % similarity), Psychrobacillus psychrodurans DSM 11713T (99.8 %) and Psychrobacillus glaciei PB01T (99.2 %). Digital DNA-DNA hybridization and average nucleotide identity values were lower than 37.3 and 85.5 %, respectively, with the closest phylogenetic neighbours. The DNA G+C content of strain Val9T calculated from the complete genome sequence was 36.6 mol%. The predominant cellular fatty acids were anteiso-C15 : 0, iso-C15 : 0 and anteiso-C17 : 1ω11c. Menaquinone-8 was the major respiratory quinone. The peptidoglycan type was A4ß l-Orn-d-glu. The novel strain contained diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol as predominant polar lipids. Based on 16S rRNA phylogenetic and multilocus sequence analyses (recA, rpoB and gyrB), as well as phylogenomic, chemotaxonomic and phenotypic tests, we demonstrate that strain Val9T represents a novel species of the genus Psychrobacillus, for which the name Psychrobacillus antarcticus sp. nov. is proposed. The type strain is Val9T (=DSM 115096T=CCGB 1952T=NRRL B-65674T).


Assuntos
Ácidos Graxos , Ácidos Graxos/química , Filogenia , Regiões Antárticas , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Análise de Sequência de DNA , Composição de Bases , Técnicas de Tipagem Bacteriana , Vitamina K 2/química
2.
Curr Microbiol ; 80(9): 278, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37436443

RESUMO

The present study presents phenotypic and molecular characterization of a multidrug-resistant strain of Escherichia coli (Lemef26), belonging to sequence type ST9499 carrying a blaNDM-1 carbapenem resistance gene. The bacterium was isolated from a specimen of Musca domestica, collected in proximity to a hospital in Rio de Janeiro City, Brazil. The strain was identified as E. coli by matrix-assisted laser desorption-ionization time of flight mass spectrometry (Maldi-TOF-MS) and via genotypic analysis (Whole-Genome Sequencing-WGS), followed by phylogenetic analysis, antibiotic resistance profiling (using phenotypic and genotypic methods) and virulence genotyping. Interestingly, the blaNDM-1 was the only resistance determinant detected using a panel of common resistance genes, as evaluated by PCR. In contrast, WGS detected genes conferring resistance to aminoglycosides, fluoroquinolones, quinolones, trimethoprim, beta-lactams, chloramphenicol, macrolides, sulfonamide, tetracycline, lincosamide and streptogramin B. Conjugation experiments demonstrated the transfer of carbapenem resistance, via acquisition of the blaNDM-1 sequence, to a sensitive receptor strain of E. coli, indicating that blaNDM-1 is located on a conjugative plasmid (most likely of the IncA/C incompatibility group, in association with the transposon Tn3000). Phylogenetic analyses placed Lemef26 within a clade of strains exhibiting allelic and environment diversity, with the greatest level of relatedness recorded with a strain isolated from a human source suggesting a possible anthropogenic origin. Analysis of the virulome revealed the presence of fimbrial and pilus genes, including a CFA/I fimbriae (cfaABCDE), common pilus (ecpABCDER), laminin-bind fimbrae (elfADG), hemorrhagic pilus (hcpABC) and fimbrial adherence determinants (stjC) indicates the ability of strain Lemef26 to colonize animal hosts. To the best of our knowledge, this study represents the first report of blaNDM-1 carbapenemase gene in an E. coli strain isolated from M. domestica. In concordance with the findings of previous studies on the carriage of MDR bacteria by flies, the data presented herein provide support to the idea that flies may represent a convenient means (as sentinel animals) for the monitoring of environmental contamination with multidrug-resistant bacteria.


Assuntos
Infecções por Escherichia coli , Moscas Domésticas , Animais , Humanos , Escherichia coli/genética , Moscas Domésticas/genética , Brasil , Filogenia , beta-Lactamases/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Escherichia coli/microbiologia , Carbapenêmicos , Plasmídeos , Testes de Sensibilidade Microbiana
3.
Mem Inst Oswaldo Cruz ; 116: e200584, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34076074

RESUMO

In the present study, we investigated the genetic diversity of Plasmodium vivax metacaspase 1 (PvMCA1) catalytic domain in two municipalities of the main malaria hotspot in Brazil, i.e., the Juruá Valley, and observed complete sequence identity among all P. vivax field isolates and the Sal-1 reference strain. Analysis of PvMCA1 catalytic domain in different P. vivax genomic sequences publicly available also revealed a high degree of conservation worldwide, with very few amino acid substitutions that were not related to putative histidine and cysteine catalytic residues, whose involvement with the active site of protease was herein predicted by molecular modeling. The genetic conservation presented by PvMCA1 may contribute to its eligibility as a druggable target candidate in vivax malaria.


Assuntos
Malária Vivax , Plasmodium vivax , Brasil , Domínio Catalítico , Variação Genética/genética , Humanos , Plasmodium vivax/genética , Proteínas de Protozoários/genética
4.
Appl Microbiol Biotechnol ; 102(20): 8773-8782, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30121751

RESUMO

2,3-Butanediol (2,3-BDO) is of considerable importance in the chemical, plastic, pharmaceutical, cosmetic, and food industries. The main bacterial species producing this compound are considered pathogenic, hindering large-scale productivity. The species Paenibacillus brasilensis is generally recognized as safe (GRAS) and is phylogenetically similar to P. polymyxa, a species widely used for 2,3-BDO production. Here, we demonstrate, for the first time, that P. brasilensis strains produce 2,3-BDO. Total 2,3-BDO concentrations for 15 P. brasilensis strains varied from 5.5 to 7.6 g/l after 8 h incubation at 32 °C in modified YEPD medium containing 20 g/l glucose. Strain PB24 produced 8.2 g/l of 2,3-BDO within a 12-h growth period, representing a yield of 0.43 g/g and a productivity of 0.68 g/l/h. An increase in 2,3-BDO production by strain PB24 was observed using higher concentrations of glucose, reaching 27 g/l of total 2,3-BDO in YEPD containing about 80 g/l glucose within a 72-h growth period. We sequenced the genome of P. brasilensis PB24 and uncovered at least six genes related to the 2,3-BDO pathway at four distinct loci. We also compared gene sequences related to the 2,3-BDO pathway in P. brasilensis PB24 with those of other spore-forming bacteria, and found strong similarity to P. polymyxa, P. terrae, and P. peoriae 2,3-BDO-related genes. Regulatory regions upstream of these genes indicated that they are probably co-regulated. Finally, we propose a production pathway from glucose to 2,3-BDO in P. brasilensis PB24. Although the gene encoding S-2,3-butanediol dehydrogenase (butA) was found in the genome of P. brasilensis PB24, only R,R-2,3- and meso-2,3-butanediol were detected by gas chromatography under the growth conditions tested here. Our findings can serve as a basis for further improvements to the metabolic capabilities of this little-studied Paenibacillus species in relation to production of the high-value chemical 2,3-butanediol.


Assuntos
Butileno Glicóis/metabolismo , Paenibacillus/genética , Paenibacillus/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Meios de Cultura/química , Meios de Cultura/metabolismo , Fermentação , Glucose/metabolismo , Engenharia Metabólica
5.
Front Microbiol ; 14: 1142582, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025627

RESUMO

Paenibacillus antarcticus IPAC21, an endospore-forming and bioemulsifier-producing strain, was isolated from King George Island, Antarctica. As psychrotolerant/psychrophilic bacteria can be considered promising sources for novel products such as bioactive compounds and other industrially relevant substances/compounds, the IPAC21 genome was sequenced using Illumina Hi-seq, and a search for genes related to the production of bioemulsifiers and other metabolic pathways was performed. The IPAC21 strain has a genome of 5,505,124 bp and a G + C content of 40.5%. Genes related to the biosynthesis of exopolysaccharides, such as the gene that encodes the extracellular enzyme levansucrase responsible for the synthesis of levan, the 2,3-butanediol pathway, PTS sugar transporters, cold-shock proteins, and chaperones were found in its genome. IPAC21 cell-free supernatants obtained after cell growth in trypticase soy broth at different temperatures were evaluated for bioemulsifier production by the emulsification index (EI) using hexadecane, kerosene and diesel. EI values higher than 50% were obtained using the three oil derivatives when IPAC21 was grown at 28°C. The bioemulsifier produced by P. antarcticus IPAC21 was stable at different NaCl concentrations, low temperatures and pH values, suggesting its potential use in lower and moderate temperature processes in the petroleum industry.

6.
World J Microbiol Biotechnol ; 28(3): 953-62, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22805816

RESUMO

In a search for an antifungal substance with activity against the dermatophyte fungus Trichophyton rubrum, strain POC 115 was chosen among different Paenibacillus strains for its phenotypic and genetic characterization and for preliminary characterization of its antimicrobial substance. Strain POC 115 was identified as belonging to Paenibacillus kribbensis. Physico-chemical characterization of the antimicrobial substance showed that it was not stable during heat and organic solvents treatments, but its activity was preserved at a wide range of pH and after treatment with pronase E, trypsin and DNase I. The crude concentrated supernatant of POC 115 culture was partially purified and the fraction presenting antimicrobial activity was further analyzed by UPLC/Mass Spectrometry. Two peaks were observed at 2.02 (mass 1,207 D) and 2.71 (mass 1,014 D) min in the mass chromatogram. The antimicrobial substance produced by POC 115 was correlated to iturin family compounds based on a set of primers designed for the amplification of PKS operon in the POC 115 genome. As happens with the mode of action of the antibiotics of the iturin group, the AMS produced by POC 115 caused the disruption of cytoplasmic membrane of T. rubrum and the subsequent withdraw of the intracellular material. This is the first report on the production of antimicrobial substances in P. kribbensis, and it may be of great relevance as an alternative or supplementary substance to antifungal drugs currently used against dermatophytes.


Assuntos
Antibiose , Antifúngicos/farmacologia , Paenibacillus/fisiologia , Trichophyton/crescimento & desenvolvimento , Antifúngicos/química , Antifúngicos/isolamento & purificação , Antifúngicos/metabolismo , Técnicas de Tipagem Bacteriana , Membrana Celular/efeitos dos fármacos , Cromatografia Líquida , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Concentração de Íons de Hidrogênio , Espectrometria de Massas , Dados de Sequência Molecular , Paenibacillus/classificação , Paenibacillus/isolamento & purificação , Paenibacillus/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Rizosfera , Análise de Sequência de DNA , Microbiologia do Solo , Temperatura , Trichophyton/efeitos dos fármacos
7.
Geobiology ; 20(1): 98-111, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34545693

RESUMO

Soil samples from a transect from low to highly hydrocarbon-contaminated soils were collected around the Brazilian Antarctic Station Comandante Ferraz (EACF), located at King George Island, Antarctica. Quantitative PCR (qPCR) analysis of bacterial 16S rRNA genes, 16S rRNA gene (iTag), and shotgun metagenomic sequencing were used to characterize microbial community structure and the potential for petroleum degradation by indigenous microbes. Hydrocarbon contamination did not affect bacterial abundance in EACF soils (bacterial 16S rRNA gene qPCR). However, analysis of 16S rRNA gene sequences revealed a successive change in the microbial community along the pollution gradient. Microbial richness and diversity decreased with the increase of hydrocarbon concentration in EACF soils. The abundance of Cytophaga, Methyloversatilis, Polaromonas, and Williamsia was positively correlated (p-value = <.05) with the concentration of total petroleum hydrocarbons (TPH) and/or polycyclic aromatic hydrocarbons (PAH). Annotation of metagenomic data revealed that the most abundant hydrocarbon degradation pathway in EACF soils was related to alkyl derivative-PAH degradation (mainly methylnaphthalenes) via the CYP450 enzyme family. The abundance of genes related to nitrogen fixation increased in EACF soils as the concentration of hydrocarbons increased. The results obtained here are valuable for the future of bioremediation of petroleum hydrocarbon-contaminated soils in polar environments.


Assuntos
Microbiota , Petróleo , Poluentes do Solo , Regiões Antárticas , Hidrocarbonetos/análise , Petróleo/metabolismo , RNA Ribossômico 16S/genética , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise , Poluentes do Solo/metabolismo
8.
Microbiol Res ; 243: 126647, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33290933

RESUMO

Biological nitrogen fixation (BNF), performed by diazotrophic prokaryotes, is responsible for reducing dinitrogen (N2) present in the biosphere into biologically available forms of nitrogen. Paenibacillus brasilensis PB24 is a diazotrophic Gram-positive bacterium and is considered ecologically and industrially important because it is able to produce antimicrobial substances and 2,3-butanediol. However, the genetics and regulation of its nitrogen fixing (nif) genes have never been assessed so far. Therefore, the present study aimed to (i) identify the structural and regulatory genes related to BNF in the PB24 genome, (ii) perform comparative genomics analysis of the nif operon among different Paenibacillus species and (iii) study the expression of these genes in the presence and absence of NH4. Strain PB24 showed a nif operon composed of nine genes (nifBHDKENXhesAV), with a conserved synteny (with small variations) among the Paenibacillus species evaluated. BNF regulatory genes, glnK and amtB (encoding GlnK signal transduction protein and AmtB transmembrane protein, respectively) and glnR and glnA genes (encoding the transcription factor GlnR and glutamine synthetase) were found in the PB24 genome. Primers were designed for qPCR amplification of the nitrogenase structural (nifH, nifD and nifK) and regulatory (glnA and amtB) BNF genes. The structural gene expression in PB24 was up- and downregulated in the absence and presence of NH4, respectively. The gene expression levels indicated a GlnR-mediated repression of genes associated with ammonium import (amtBglnK) and BNF (nif genes). Additionally, the regulatory mechanism of GlnR in P. brasilensis PB24 differed from the other Paenibacillus evaluated, considering the different distribution of binding sites recognized by GlnR.


Assuntos
Regulação Bacteriana da Expressão Gênica , Fixação de Nitrogênio , Paenibacillus/genética , Paenibacillus/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação
9.
Syst Appl Microbiol ; 44(4): 126223, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34157595

RESUMO

Streptomyces thermoautotrophicus UBT1T has been suggested to merit generic status due to its phylogenetic placement and distinctive phenotypes among Actinomycetia. To evaluate whether 'S. thermoautotrophicus' represents a higher taxonomic rank, 'S. thermoautotrophicus' strains UBT1T and H1 were compared to Actinomycetia using 16S rRNA gene sequences and comparative genome analyses. The UBT1T and H1 genomes each contain at least two different 16S rRNA sequences, which are closely related to those of Acidothermus cellulolyticus (order Acidothermales). In multigene-based phylogenomic trees, UBT1T and H1 typically formed a sister group to the Streptosporangiales-Acidothermales clade. The Average Amino Acid Identity, Percentage of Conserved Proteins, and whole-genome Average Nucleotide Identity (Alignment Fraction) values were ≤58.5%, ≤48%, ≤75.5% (0.3) between 'S. thermoautotrophicus' and Streptosporangiales members, all below the respective thresholds for delineating genera. The values for genomics comparisons between strains UBT1T and H1 with Acidothermales, as well as members of the genus Streptomyces, were even lower. A review of the 'S. thermoautotrophicus' proteomic profiles and KEGG orthology demonstrated that UBT1T and H1 present pronounced differences, both tested and predicted, in phenotypic and chemotaxonomic characteristics compared to its sister clades and Streptomyces. The distinct phylogenetic position and the combination of genotypic and phenotypic characteristics justify the proposal of Carbonactinospora gen. nov., with the type species Carbonactinospora thermoautotrophica comb. nov. (type strain UBT1T, = DSM 100163T = KCTC 49540T) belonging to Carbonactinosporaceae fam. nov. within Actinomycetia.


Assuntos
Filogenia , Streptomyces , Actinobacteria , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Proteômica , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Streptomyces/classificação
10.
J Microbiol ; 46(3): 257-64, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18604494

RESUMO

Different species of Paenibacillus are considered to be plant growth-promoting rhizobacteria (PGPR) due to their ability to repress soil borne pathogens, fix atmospheric nitrogen, induce plant resistance to diseases and/or produce plant growth-regulating substances such as auxins. Although it is known that indole-3-acetic acid (IAA) is the primary naturally occurring auxin excreted by Paenibacillus species, its transport mechanisms (auxin efflux carriers) have not yet been characterized. In this study, the auxin production of P. polymyxa and P. graminis, which are prevalent in the rhizospheres of maize and sorghum sown in Brazil, was evaluated. In addition, the gene encoding the Auxin Efflux Carrier (AEC) protein from P. polymyxa DSM36(T) was sequenced and used to determine if various strains of P. polymyxa and P. graminis possessed this gene. Each of the 68 P. polymyxa strains evaluated in this study was able to produce IAA, which was produced at concentrations varying from 1 to 17 microg/ml. However, auxin production was not detected in any of the 13 P. graminis strains tested in this study. Different primers were designed for the PCR amplification of the gene coding for the AEC in P. polymyxa, and the predicted protein of 319 aa was homologous to AEC from Bacillus amyloliquefaciens, B. licheniformis, and B. subtilis. However, no product was observed when these primers were used to amplify the genomic DNA of seven strains of P. graminis, which suggests that this gene is not present in this species. Moreover, none of the P. graminis genomes tested were homologous to the gene coding for AEC, whereas all of the P. polymyxa genomes evaluated were. This is the first study to demonstrate that the AEC protein is present in P. polymyxa genome.


Assuntos
Bacillus/genética , Bacillus/metabolismo , Proteínas de Bactérias/genética , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Microbiologia do Solo , Bacillus/classificação , Bacillus/isolamento & purificação , Proteínas de Bactérias/metabolismo , Genoma Bacteriano , Filogenia , Raízes de Plantas/microbiologia , Sorghum/microbiologia , Zea mays/microbiologia
11.
Biotechnol Lett ; 30(5): 929-35, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18246304

RESUMO

Paenibacillus graminis strains were described recently as cyclodextrin (CD) producers. Cyclodextrins are produced by cyclodextrin glucanotransferase (CGTase) which has not been characterized in P. graminis. Similar amounts of alpha- and beta-CDs were produced by P. graminis (MC22.13) and P. macerans (LMD24.10(T)). Primers were designed to sequence the gene encoding CGTase from P. graminis. A phylogenetic tree was constructed and P. graminis CGTase protein showed to be closer (79.4% protein identity) to P. macerans |P31835|. Hybridization studies suggested that the gene encoding CGTase is located in different positions in the genomes of P. macerans and P. graminis.


Assuntos
Ciclodextrinas/biossíntese , Glucosiltransferases/genética , Bacilos Gram-Positivos Formadores de Endosporo/enzimologia , Bacilos Gram-Positivos Formadores de Endosporo/genética , Proteínas de Bactérias/genética , Sequência de Bases , Clonagem Molecular , Primers do DNA , DNA Bacteriano/genética , Bacilos Gram-Positivos Formadores de Endosporo/metabolismo , Hibridização de Ácido Nucleico , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Microbiologia do Solo
12.
J Microbiol Biotechnol ; 18(5): 805-14, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18633275

RESUMO

Liming of acidic soils can prevent aluminum toxicity and improve crop production. Some maize lines show aluminum (Al) tolerance, and exudation of organic acids by roots has been considered to represent an important mechanism involved in the tolerance. However, there is no information about the impact of liming on the structures of bacterial and fungal communities in Cerrado soil, nor if there are differences between the microbial communities from the rhizospheres of Al-tolerant and Al-sensitive maize lines. This study evaluated the effects of liming on the structure of bacterial and fungal communities in bulk soil and rhizospheres of Al-sensitive and Al-tolerant maize (Zea mays L.) lines cultivated in Cerrado soil by PCR-DGGE, 30 and 90 days after sowing. Bacterial fingerprints revealed that the bacterial communities from rhizospheres were more affected by aluminum stress in soil than by the maize line (Al-sensitive or Al-tolerant). Differences in bacterial communities were also observed over time (30 and 90 days after sowing), and these occurred mainly in the Actinobacteria. Conversely, fungal communities from the rhizosphere were weakly affected either by liming or by the rhizosphere, as observed from the DGGE profiles. Furthermore, only a few differences were observed in the DGGE profiles of the fungal populations during plant development when compared with bacterial communities. Cloning and sequencing of 16S rRNA gene fragments obtained from dominant DGGE bands detected in the bacterial profiles of the Cerrado bulk soil revealed that Actinomycetales and Rhizobiales were among the dominant ribotypes.


Assuntos
Alumínio/toxicidade , Bactérias/efeitos dos fármacos , Carbonato de Cálcio/farmacologia , Fungos/efeitos dos fármacos , Raízes de Plantas/microbiologia , Microbiologia do Solo , Zea mays/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Impressões Digitais de DNA , DNA Bacteriano/genética , DNA Fúngico/genética , DNA Ribossômico/genética , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Dados de Sequência Molecular , Filogenia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética , Solo/análise , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento
13.
Front Microbiol ; 9: 3205, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30733713

RESUMO

Serratia marcescens is a bacterium with the ability to colonize several niches, including some eukaryotic hosts. S. marcescens have been recently found in the gut of hematophagous insects that act as parasite vectors, such as Anopheles, Rhodnius, and Triatoma. While some S. marcescens strains have been reported as symbiotic or pathogenic to other insects, the role of S. marcescens populations from the gut microbiota of Rhodnius prolixus, a vector of Chagas' disease, remains unknown. Bacterial colonies from R. prolixus gut were isolated on BHI agar. After BOX-PCR fingerprinting, the genomic sequences of two isolates RPA1 and RPH1 were compared to others S. marcescens from the NCBI database in other to estimate their evolutionary divergence. The in vitro trypanolytic activity of these two bacterial isolates against Trypanosoma cruzi (DM28c clone and Y strain) was assessed by microscopy. In addition, the gene expression of type VI secretion system (T6SS) was detected in vivo by RT-PCR. Comparative genomics of RPA1 and RPH1 revealed, besides plasmid presence and genomic islands, genes related to motility, attachment, and quorum sensing in both genomes while genes for urea hydrolysis and type II secretion system (T2SS) were found only in the RPA1 genome. The in vitro trypanolytic activity of both S. marcescens strains was stronger in their stationary phases of growth than in their exponential ones, with 65-70 and 85-90% of epimastigotes (Dm28c clone and Y strain, respectively) being lysed after incubation with RPA1 or RPH1 in stationary phase. Although T6SS transcripts were detected in guts up to 40 days after feeding (DAF), R. prolixus morbidity or mortality did not appear to be affected. In this report, we made available two trypanolytic S. marcescens strains from R. prolixus gut to the scientific community together with their genomic sequences. Here, we describe their genomic features with the purpose of bringing new insights into the S. marcescens adaptations for colonization of the specific niche of triatomine guts. This study provides the basis for a better understanding of the role of S. marcescens in the microbiota of R. prolixus gut as a potential antagonist of T. cruzi in this complex system.

14.
J Microbiol Biotechnol ; 17(5): 753-60, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-18051296

RESUMO

The diversity of Paenibacillus species was assessed in the rhizospheres of four cultivars of sorghum sown in Cerrado soil amended with two levels of nitrogen fertilizer (12 and 120 kg/ha). Two cultivars (IS 5322-C and IS 6320) demanded the higher amount of nitrogen to grow, whereas the other two (FBS 8701-9 and IPA 1011) did not. Using the DNA extracted from the rhizospheres, a Paenibacillus-specific PCR system based on the RNA polymerase gene (rpoB) was chosen for the molecular analyses. The resulting PCR products were separated into community fingerprints by DGGE and the results showed a clear distinction between cultivars. In addition, clone libraries were generated from the rpoB fragments of two cultivars (IPA 1011 and IS 5322-C) using both fertilization conditions, and 318 selected clones were sequenced. Analyzed sequences were grouped into 14 Paenibacillus species. A greater diversity of Paenibacillus species was observed in cultivar IPA 1011 compared with cultivar IS 5322-C. Moreover, statistical analyses of the sequences showed that the bacterial diversity was more influenced by cultivar type than nitrogen fertilization, corroborating the DGGE results. Thus, the sorghum cultivar type was the overriding determinative factor that influenced the community structures of the Paenibacillus communities in the habitats investigated.


Assuntos
Biodiversidade , Fertilizantes/microbiologia , Bactérias Gram-Positivas/classificação , Bactérias Gram-Positivas/isolamento & purificação , Nitrogênio/metabolismo , Raízes de Plantas/microbiologia , Sorghum/microbiologia , Impressões Digitais de DNA , DNA Bacteriano/química , DNA Bacteriano/genética , RNA Polimerases Dirigidas por DNA/genética , Eletroforese em Gel de Poliacrilamida , Bactérias Gram-Positivas/genética , Dados de Sequência Molecular , Desnaturação de Ácido Nucleico , Filogenia , Reação em Cadeia da Polimerase/métodos , Análise de Sequência de DNA , Homologia de Sequência
15.
Genome Announc ; 5(19)2017 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-28495764

RESUMO

We report here the 3,586,065-bp draft genome of Geobacillus sp. LEMMY01, which was isolated (axenic culture) from a thermophilic chemolitoautotrophic consortium obtained from the site of a burning grass pile. The genome contains biosynthetic gene clusters coding for secondary metabolites, such as terpene and lantipeptide, confirming the biotechnological potential of this strain.

16.
Bioinform Biol Insights ; 11: 1177932217733422, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28989277

RESUMO

The digestive tract of triatomines (DTT) is an ecological niche favored by microbiota whose enzymatic profile is adapted to the specific substrate availability in this medium. This report describes the molecular enzymatic properties that promote bacterial prominence in the DTT. The microbiota composition was assessed previously based on 16S ribosomal DNA, and whole sequenced genomes of bacteria from the same genera were used to calculate the GC level of rare and prominent bacterial species in the DTT. The enzymatic reactions encoded by coding sequences of both rare and common bacterial species were then compared and revealed key functions explaining why some genera outcompete others in the DTT. Representativeness of DTT microbiota was investigated by shotgun sequencing of DNA extracted from bacteria grown in liquid Luria-Bertani broth (LB) medium. Results showed that GC-rich bacteria outcompete GC-poor bacteria and are the dominant components of the DTT microbiota. In addition, oxidoreductases are the main enzymatic components of these bacteria. In particular, nitrate reductases (anaerobic respiration), oxygenases (catabolism of complex substrates), acetate-CoA ligase (tricarboxylic acid cycle and energy metabolism), and kinase (signaling pathway) were the major enzymatic determinants present together with a large group of minor enzymes including hydrogenases involved in energy and amino acid metabolism. In conclusion, despite their slower growth in liquid LB medium, bacteria from GC-rich genera outcompete the GC-poor bacteria because their specific enzymatic abilities impart a selective advantage in the DTT.

17.
Genome Announc ; 5(29)2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28729273

RESUMO

We report here the 3,637,012-bp draft genome sequence of Microbacterium sp. strain LEMMJ01, isolated from ornithogenic soil from King George Island, Antarctica. The total number of genes presented in the draft genome sequence was 3,553, and the total number of coding sequences was 3,497. In addition, genes related to the production of terpene and carotenoids were revealed.

18.
J Microbiol ; 44(6): 591-9, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17205036

RESUMO

To address the diversity of cyclodextrin-producing P. graminis strains isolated from wheat roots and rhizospheres of maize and sorghum sown in Australia, Brazil, and France, restriction fragment length polymorphism analysis of part of genes encoding RNA polymerase (rpoB-RFLP) and DNA gyrase subunit B (gyrB-RFLP) was used to produce genetic fingerprints. A phylogenetic tree based on rpoB gene sequences was also constructed. The isolates originated from Brazil could be separated from those from Australia and France, when data from the rpoB-based phylogenetic tree or gyrB-RFLP were considered. These analyses also allowed the separation of all P. graminis strains studied here into four clusters; one group formed by the strains GJK201 and RSA19T, second group formed by the strains MC22.02 and MC04.21, third group formed by the strains TOD61, TOD 221, TOD302, and TOD111, and forth group formed by all strains isolated from plants sown in Cerrado soil, Brazil. As this last group was formed by strains isolated from sorghum and maize sown in the same soil (Cerrado) in Brazil, our results suggest that the diversity of these P. graminis strains is more affected by the soil type than the plant from where they have been isolated.


Assuntos
Ciclodextrinas/biossíntese , Bacilos Gram-Positivos Formadores de Endosporo/classificação , Raízes de Plantas/microbiologia , Microbiologia do Solo , Sorghum/microbiologia , Triticum/microbiologia , Zea mays/microbiologia , Austrália , Brasil , DNA Girase/genética , DNA Bacteriano/análise , RNA Polimerases Dirigidas por DNA/genética , França , Bacilos Gram-Positivos Formadores de Endosporo/genética , Bacilos Gram-Positivos Formadores de Endosporo/isolamento & purificação , Bacilos Gram-Positivos Formadores de Endosporo/metabolismo , Dados de Sequência Molecular , Filogenia , Polimorfismo de Fragmento de Restrição , Sorghum/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento
19.
Genome Announc ; 4(3)2016 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-27231360

RESUMO

The whole genome of Rummeliibacillus stabekisii PP9, isolated from a soil sample from Antarctica, consists of a circular chromosome of 3,412,092 bp and a circular plasmid of 8,647 bp, with 3,244 protein-coding genes, 12 copies of the 16S-23S-5S rRNA operon, 101 tRNA genes, and 6 noncoding RNAs (ncRNAs).

20.
FEMS Microbiol Ecol ; 53(2): 317-28, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-16329951

RESUMO

A specific PCR system based on the gene encoding the RNA polymerase beta subunit, rpoB, was developed for amplification and denaturing gradient gel electrophoresis (DGGE) fingerprinting of Paenibacillus communities in environmental samples. This gene has been previously proven to be a powerful identification tool for the discrimination of species within the genus Paenibacillus and could avoid the limitations of 16S rRNA-based phylogenetic analysis. Initially, the PCR system based on universal rpoB primers were used to amplify DNAs of different Paenibacillus species. A new reverse primer (rpoBPAEN) was further designed based on an insertion of six nucleotides in the Paenibacillus sequences analyzed. This semi-nested PCR system was evaluated for specificity using DNAs isolated from 27 Paenibacillus species belonging to different 16S rRNA-based phylogenetic groups and seven non-Paenibacillus species. The non-Paenibacillus species were not amplified using this PCR approach and one group of Paenibacillus species consisting of strains without the six-base insert also were not amplified; these latter strains were found to be distinct based on 16S rRNA gene phylogeny. In addition, a clone library was generated from the rpoB fragments amplified from two Brazilian soil types (Cerrado and Forest) and all 62 clones sequenced were closely related to one of the 22 sequences from Paenibacillus previously obtained in this study. To assess the diversity of Paenibacillus species in Cerrado and Forest soils and in the rhizosphere of different cultivars of maize, a PCR-DGGE system was used. The Paenibacillus DGGE fingerprints showed a clear distinction between communities of Paenibacillus in Forest and Cerrado soils and rhizosphere samples clustered along Cerrado soil. Profiles of cultivars CMS22 and CMS36 clustered together, with only 53% of similarity to CMS11 and CMS04. The results presented here demonstrate the potential use of the rpoB-based Paenibacillus-specific PCR-DGGE method for studying the diversity of Paenibacillus populations in natural environments.


Assuntos
Bactérias/classificação , Bactérias/genética , Filogenia , Impressões Digitais de DNA , DNA Bacteriano/análise , Eletroforese em Gel Bidimensional , Monitoramento Ambiental , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA