Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 269(Pt 2): 132266, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38777689

RESUMO

Bacterial cellulose (BC) represents a promising biomaterial, due to its unique and versatile properties. We report, herein, on purposely-designed structural modifications of BC that enhance its application as a wound dressing material. Chemical modification of the functional groups of BC was performed initially to introduce a hydrophobic/oleophilic character to its surface. Specifically, silanization was carried out in an aqueous medium using methyltrimethoxisilane (MTMS) as the silanizing agent, and aerogels were subsequently prepared by freeze-drying. The BC-MTMS aerogel obtained displayed a highly porous (99 %) and lightweight structure with an oil absorption capacity of up to 52 times its dry weight. The XRD pattern indicated that the characteristic crystallographic planes of the native BC were maintained after the silanization process. Thermal analysis showed that the thermal stability of the BC-MTMS aerogel increased, as compared to the pure BC aerogel (pBC). Moreover, the BC-MTMS aerogel was not cytotoxic to fibroblasts and keratinocytes. In the second step of the study, the incorporation of natural oils into the aerogel's matrix was found to endow antimicrobial and/or healing properties to BC-MTMS. Bourbon geranium (Pelargonium X ssp.) essential oil (GEO) was the only oil that exhibited antimicrobial activity against the tested microorganisms, whereas buriti (Mauritia flexuosa) vegetable oil (BVO) was non-cytotoxic to the cells. This study demonstrates that the characteristics of the BC structure can be modified, while preserving its intrinsic features, offering new possibilities for the development of BC-derived materials for specific applications in the biomedical field.


Assuntos
Celulose , Óleos Voláteis , Óleos de Plantas , Celulose/química , Celulose/farmacologia , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Géis/química , Cicatrização/efeitos dos fármacos , Fabaceae/química , Humanos , Fibroblastos/efeitos dos fármacos , Pelargonium/química , Silanos/química
2.
Int J Biol Macromol ; : 133774, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39004244

RESUMO

Bacterial cellulose (BC), produced by bacterial fermentation, is a high-purity material. BC can be oxidized (BCOXI), providing aldehyde groups for covalent bonds with drugs. Frutalin (FTL) is a lectin capable of modulating cell proliferation and remodeling, which accelerates wound healing. This study aimed to develop an FTL-incorporated dressing based on BC, and to evaluate its physicochemical properties and biological activity in vitro. An experimental design was employed to maximize FTL loading yield onto the BC and BCOXI, where independent variables were FTL concentration, temperature and immobilization time. BCOXI-FTL 1 (44.96 % ±â€¯1.34) had the highest incorporation yield (IY) at the experimental conditions: 6 h, 5 °C, 20 µg mL-1. The second highest yield was BCOXI-FTL 6 (23.28 % ±â€¯1.43) using 24 h, 5 °C, 100 µg mL-1. Similarly, the same reaction parameters provided higher immobilization yields for native bacterial cellulose: BC-FTL 6 (16.91 % ±â€¯1.05) and BC-FTL 1 (21.71 % ±â€¯1.57). Purified FTL displayed no cytotoxicity to fibroblast cells (<50 µg mL-1 concentration) during 24 h. Furthermore, BCOXI-FTL and BC-FTL were non-cytotoxic during 24 h and stimulated fibroblast migration. BCOXI-FTL demonstrated neutrophil activation in vitro similar to FTL. These promising results indicate that the bacterial cellulose matrices containing FTL at low concentrations, could be used as an innovative biomaterial for developing wound dressings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA