Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; : 133774, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39004244

RESUMO

Bacterial cellulose (BC), produced by bacterial fermentation, is a high-purity material. BC can be oxidized (BCOXI), providing aldehyde groups for covalent bonds with drugs. Frutalin (FTL) is a lectin capable of modulating cell proliferation and remodeling, which accelerates wound healing. This study aimed to develop an FTL-incorporated dressing based on BC, and to evaluate its physicochemical properties and biological activity in vitro. An experimental design was employed to maximize FTL loading yield onto the BC and BCOXI, where independent variables were FTL concentration, temperature and immobilization time. BCOXI-FTL 1 (44.96 % ±â€¯1.34) had the highest incorporation yield (IY) at the experimental conditions: 6 h, 5 °C, 20 µg mL-1. The second highest yield was BCOXI-FTL 6 (23.28 % ±â€¯1.43) using 24 h, 5 °C, 100 µg mL-1. Similarly, the same reaction parameters provided higher immobilization yields for native bacterial cellulose: BC-FTL 6 (16.91 % ±â€¯1.05) and BC-FTL 1 (21.71 % ±â€¯1.57). Purified FTL displayed no cytotoxicity to fibroblast cells (<50 µg mL-1 concentration) during 24 h. Furthermore, BCOXI-FTL and BC-FTL were non-cytotoxic during 24 h and stimulated fibroblast migration. BCOXI-FTL demonstrated neutrophil activation in vitro similar to FTL. These promising results indicate that the bacterial cellulose matrices containing FTL at low concentrations, could be used as an innovative biomaterial for developing wound dressings.

2.
J Biomed Mater Res B Appl Biomater ; 112(4): e35399, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38533823

RESUMO

Deep skin burn represents a global morbidity and mortality problem, and the limitation of topical treatment agents has motivated research to development new formulations capable of preventing infections and accelerating healing. The aim of this work was to develop and characterize an emulgel based on collagen (COL) and gelatin (GEL) extracted from fish skin associated with Chlorella vulgaris extract (CE) and silver nitrate (AgNO3). COL and GEL were characterized by physicochemical and thermal analyses; and CE by electrophoresis and its antioxidant capacity. Three emulgels formulations were developed: COL (0.5%) + GEL (2.5%) (E1), COL+GEL+CE (1%) (E2), and COL+GEL+CE + AgNO3 (0.1%) (E3). All formulations were characterized by physicochemical, rheology assays, and preclinical analyses: cytotoxicity (in vitro) and healing potential using a burn model in rats. COL and GEL showed typical physicochemical characteristics, and CE presented 1.3 mg/mL of proteins and antioxidant activity of 76%. Emulgels presented a coherent physicochemical profile and pseudoplastic behavior. Preclinical analysis showed concentration-dependent cytotoxicity against fibroblast and keratinocytes. In addition, all emulgels induced similar percentages of wound contraction and complete wound closure in 28 days. The histopathological analysis showed higher scores for polymorphonuclear cells to E1 and greater neovascularization and re-epithelialization to E3. Then, E3 formulation has potential to improve burn healing, although its use in a clinical setting requires further studies.


Assuntos
Queimaduras , Chlorella vulgaris , Microalgas , Animais , Ratos , Antioxidantes , Queimaduras/terapia , Colágeno/uso terapêutico , Reepitelização , Pele/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA