Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Hepatology ; 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38761407

RESUMO

BACKGROUND AND AIMS: Mitochondrial antiviral signaling protein (MAVS) is a critical regulator that activates the host's innate immunity against RNA viruses, and its signaling pathway has been linked to the secretion of proinflammatory cytokines. However, the actions of MAVS on inflammatory pathways during the development of metabolic dysfunction-associated steatotic liver disease (MASLD) have been little studied. APPROACH AND RESULTS: Liver proteomic analysis of mice with genetically manipulated hepatic p63, a transcription factor that induces liver steatosis, revealed MAVS as a target downstream of p63. MAVS was thus further evaluated in liver samples from patients and in animal models with MASLD. Genetic inhibition of MAVS was performed in hepatocyte cell lines, primary hepatocytes, spheroids, and mice. MAVS expression is induced in the liver of both animal models and people with MASLD as compared with those without liver disease. Using genetic knockdown of MAVS in adult mice ameliorates diet-induced MASLD. In vitro, silencing MAVS blunts oleic and palmitic acid-induced lipid content, while its overexpression increases the lipid load in hepatocytes. Inhibiting hepatic MAVS reduces circulating levels of the proinflammatory cytokine TNFα and the hepatic expression of both TNFα and NFκß. Moreover, the inhibition of ERK abolished the activation of TNFα induced by MAVS. The posttranslational modification O -GlcNAcylation of MAVS is required to activate inflammation and to promote the high lipid content in hepatocytes. CONCLUSIONS: MAVS is involved in the development of steatosis, and its inhibition in previously damaged hepatocytes can ameliorate MASLD.

2.
Gut ; 72(3): 472-483, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35580962

RESUMO

OBJECTIVE: p63 is a transcription factor within the p53 protein family that has key roles in development, differentiation and prevention of senescence, but its metabolic actions remain largely unknown. Herein, we investigated the physiological role of p63 in glucose metabolism. DESIGN: We used cell lines and mouse models to genetically manipulate p63 in hepatocytes. We also measured p63 in the liver of patients with obesity with or without type 2 diabetes (T2D). RESULTS: We show that hepatic p63 expression is reduced on fasting. Mice lacking the specific isoform TAp63 in the liver (p63LKO) display higher postprandial and pyruvate-induced glucose excursions. These mice have elevated SIRT1 levels, while SIRT1 knockdown in p63LKO mice normalises glycaemia. Overexpression of TAp63 in wild-type mice reduces postprandial, pyruvate-induced blood glucose and SIRT1 levels. Studies carried out in hepatocyte cell lines show that TAp63 regulates SIRT1 promoter by repressing its transcriptional activation. TAp63 also mediates the inhibitory effect of insulin on hepatic glucose production, as silencing TAp63 impairs insulin sensitivity. Finally, protein levels of TAp63 are reduced in obese persons with T2D and are negatively correlated with fasting glucose and homeostasis model assessment index. CONCLUSIONS: These results demonstrate that p63 physiologically regulates glucose homeostasis.


Assuntos
Diabetes Mellitus Tipo 2 , Sirtuína 1 , Transativadores , Animais , Camundongos , Glucose/metabolismo , Fígado/metabolismo , Piruvatos/metabolismo , Sirtuína 1/metabolismo , Transativadores/metabolismo
3.
J Hepatol ; 77(1): 15-28, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35167910

RESUMO

BACKGROUND & AIMS: The pathogenesis of liver fibrosis requires activation of hepatic stellate cells (HSCs); once activated, HSCs lose intracellular fatty acids but the role of fatty acid oxidation and carnitine palmitoyltransferase 1A (CPT1A) in this process remains largely unexplored. METHODS: CPT1A was found in HSCs of patients with fibrosis. Pharmacological and genetic manipulation of CPT1A were performed in human HSC cell lines and primary HCSs. Finally, we induced fibrosis in mice lacking CPT1A specifically in HSCs. RESULTS: Herein, we show that CPT1A expression is elevated in HSCs of patients with non-alcoholic steatohepatitis, showing a positive correlation with the fibrosis score. This was corroborated in rodents with fibrosis, as well as in primary human HSCs and LX-2 cells activated by transforming growth factor ß1 (TGFß1) and fetal bovine serum (FBS). Furthermore, both pharmacological and genetic silencing of CPT1A prevent TGFß1- and FBS-induced HSC activation by reducing mitochondrial activity. The overexpression of CPT1A, induced by saturated fatty acids and reactive oxygen species, triggers mitochondrial activity and the expression of fibrogenic markers. Finally, mice lacking CPT1A specifically in HSCs are protected against fibrosis induced by a choline-deficient high-fat diet, a methionine- and choline-deficient diet, or treatment with carbon tetrachloride. CONCLUSIONS: These results indicate that CPT1A plays a critical role in the activation of HSCs and is implicated in the development of liver fibrosis, making it a potentially actionable target for fibrosis treatment. LAY SUMMARY: We show that the enzyme carnitine palmitoyltransferase 1A (CPT1A) is elevated in hepatic stellate cells (HSCs) in patients with fibrosis and mouse models of fibrosis, and that CPT1A induces the activation of these cells. Inhibition of CPT1A ameliorates fibrosis by preventing the activation of HSCs.


Assuntos
Carnitina O-Palmitoiltransferase , Células Estreladas do Fígado , Animais , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Colina , Ácidos Graxos/metabolismo , Fibrose , Células Estreladas do Fígado/metabolismo , Humanos , Fígado/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/prevenção & controle , Camundongos
4.
J Hepatol ; 76(1): 11-24, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34555423

RESUMO

BACKGROUND & AIMS: Autophagy-related gene 3 (ATG3) is an enzyme mainly known for its actions in the LC3 lipidation process, which is essential for autophagy. Whether ATG3 plays a role in lipid metabolism or contributes to non-alcoholic fatty liver disease (NAFLD) remains unknown. METHODS: By performing proteomic analysis on livers from mice with genetic manipulation of hepatic p63, a regulator of fatty acid metabolism, we identified ATG3 as a new target downstream of p63. ATG3 was evaluated in liver samples from patients with NAFLD. Further, genetic manipulation of ATG3 was performed in human hepatocyte cell lines, primary hepatocytes and in the livers of mice. RESULTS: ATG3 expression is induced in the liver of animal models and patients with NAFLD (both steatosis and non-alcoholic steatohepatitis) compared with those without liver disease. Moreover, genetic knockdown of ATG3 in mice and human hepatocytes ameliorates p63- and diet-induced steatosis, while its overexpression increases the lipid load in hepatocytes. The inhibition of hepatic ATG3 improves fatty acid metabolism by reducing c-Jun N-terminal protein kinase 1 (JNK1), which increases sirtuin 1 (SIRT1), carnitine palmitoyltransferase 1a (CPT1a), and mitochondrial function. Hepatic knockdown of SIRT1 and CPT1a blunts the effects of ATG3 on mitochondrial activity. Unexpectedly, these effects are independent of an autophagic action. CONCLUSIONS: Collectively, these findings indicate that ATG3 is a novel protein implicated in the development of steatosis. LAY SUMMARY: We show that autophagy-related gene 3 (ATG3) contributes to the progression of non-alcoholic fatty liver disease in humans and mice. Hepatic knockdown of ATG3 ameliorates the development of NAFLD by stimulating mitochondrial function. Thus, ATG3 is an important factor implicated in steatosis.


Assuntos
Proteínas Relacionadas à Autofagia/antagonistas & inibidores , Fígado Gorduroso/prevenção & controle , Mitocôndrias Hepáticas/metabolismo , Enzimas de Conjugação de Ubiquitina/antagonistas & inibidores , Animais , Proteínas Relacionadas à Autofagia/farmacologia , Modelos Animais de Doenças , Fígado Gorduroso/fisiopatologia , Metabolismo dos Lipídeos/genética , Camundongos , Mitocôndrias Hepáticas/fisiologia , Proteômica/métodos , Enzimas de Conjugação de Ubiquitina/farmacologia
5.
Hepatology ; 73(2): 606-624, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32329085

RESUMO

BACKGROUND AND AIMS: G protein-coupled receptor (GPR) 55 is a putative cannabinoid receptor, and l-α-lysophosphatidylinositol (LPI) is its only known endogenous ligand. Although GPR55 has been linked to energy homeostasis in different organs, its specific role in lipid metabolism in the liver and its contribution to the pathophysiology of nonalcoholic fatty liver disease (NAFLD) remains unknown. APPROACH AND RESULTS: We measured (1) GPR55 expression in the liver of patients with NAFLD compared with individuals without obesity and without liver disease, as well as animal models with steatosis and nonalcoholic steatohepatitis (NASH), and (2) the effects of LPI and genetic disruption of GPR55 in mice, human hepatocytes, and human hepatic stellate cells. Notably, we found that circulating LPI and liver expression of GPR55 were up-regulated in patients with NASH. LPI induced adenosine monophosphate-activated protein kinase activation of acetyl-coenzyme A carboxylase (ACC) and increased lipid content in human hepatocytes and in the liver of treated mice by inducing de novo lipogenesis and decreasing ß-oxidation. The inhibition of GPR55 and ACCα blocked the effects of LPI, and the in vivo knockdown of GPR55 was sufficient to improve liver damage in mice fed a high-fat diet and in mice fed a methionine-choline-deficient diet. Finally, LPI promoted the initiation of hepatic stellate cell activation by stimulating GPR55 and activation of ACC. CONCLUSIONS: The LPI/GPR55 system plays a role in the development of NAFLD and NASH by activating ACC.


Assuntos
Lisofosfolipídeos/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/complicações , Receptores de Canabinoides/metabolismo , Acetil-CoA Carboxilase/antagonistas & inibidores , Acetil-CoA Carboxilase/metabolismo , Adulto , Idoso , Animais , Biópsia , Agonistas de Receptores de Canabinoides/farmacologia , Linhagem Celular , Estudos de Coortes , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Células Estreladas do Fígado , Hepatócitos , Humanos , Lipogênese/efeitos dos fármacos , Fígado/patologia , Lisofosfolipídeos/sangue , Masculino , Camundongos , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/sangue , Obesidade/metabolismo , Receptores de Canabinoides/genética , Regulação para Cima
6.
Neuroendocrinology ; 110(11-12): 1042-1054, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31945763

RESUMO

Linaclotide is a synthetic peptide approved by the FDA for the treatment of constipation-predominant irritable bowel syndrome and chronic constipation. Linaclotide binds and activates the transmembrane receptor guanylate cyclase 2C (Gucy2c). Uroguanylin (UGN) is a 16 amino acid peptide that is mainly secreted by enterochromaffin cells in the duodenum and proximal small intestine. UGN is the endogenous ligand of Gucy2c and decreases body weight in diet-induced obese (DIO) mice via the activation of the thermogenic program in brown adipose tissue. Therefore, we wanted to evaluate whether oral linaclotide could also improve DIO mice metabolic phenotype. In this study, we have demonstrated that DIO mice orally treated with linaclotide exhibited a significant reduction of body weight without modifying food intake. Linaclotide exerts its actions through the central nervous system, and more specifically, via Gucy2c receptors located in the mediobasal hypothalamus, leading to the activation of the sympathetic nervous system to trigger the thermogenic activity of brown fat stimulating energy expenditure. These findings indicate for first time that, in addition to its effects at intestinal level to treat irritable bowel syndrome with constipation and chronic constipation, linaclotide also exerts a beneficial effect in whole body metabolism.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Agonistas da Guanilil Ciclase C/farmacologia , Hipotálamo/efeitos dos fármacos , Obesidade/tratamento farmacológico , Peptídeos/farmacologia , Receptores de Enterotoxina/efeitos dos fármacos , Termogênese/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Dieta Hiperlipídica , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
Molecules ; 23(9)2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30135414

RESUMO

No scientific report proves the action of the phytochemicals from the mangrove tree Rhizophora mangle in the treatment of diabetes. The aim of this work is to evaluate the effects of the acetonic extract of R. mangle barks (AERM) on type 2 diabetes. The main chemical constituents of the extract were analyzed by high-performance liquid chromatography (HPLC) and flow injection analysis electrospray-iontrap mass spectrometry (FIA-ESI-IT-MS/MS). High-fat diet (HFD)-fed mice were used as model of type 2 diabetes associated with obesity. After 4 weeks of AERM 5 or 50 mg/kg/day orally, glucose homeostasis was evaluated by insulin tolerance test (kiTT). Hepatic steatosis, triglycerides and gene expression were also evaluated. AERM consists of catechin, quercetin and chlorogenic acids derivatives. These metabolites have nutritional importance, obese mice treated with AERM (50 mg/kg) presented improvements in insulin resistance resulting in hepatic steatosis reductions associated with a strong inhibition of hepatic mRNA levels of CD36. The beneficial effects of AERM in an obesity model could be associated with its inhibitory α-amylase activity detected in vitro. Rhizophora mangle partially reverses insulin resistance and hepatic steatosis associated with obesity, supporting previous claims in traditional knowledge.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica/metabolismo , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Rhizophoraceae/química , Animais , Biomarcadores , Glicemia , Cromatografia Líquida de Alta Pressão , Dieta Hiperlipídica , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Redes e Vias Metabólicas , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Extratos Vegetais/química , Extratos Vegetais/farmacocinética , Polifenóis/química , Polifenóis/farmacocinética , Substâncias Protetoras/química , Substâncias Protetoras/farmacocinética , Substâncias Protetoras/farmacologia , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
8.
Mol Metab ; 85: 101962, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38815625

RESUMO

OBJECTIVE: p63 is a transcription factor involved in multiple biological functions. In the liver, the TAp63 isoform induces lipid accumulation in hepatocytes. However, the role of liver TAp63 in the progression of metabolic dysfunction-associated steatohepatitis (MASH) with fibrosis is unknown. METHODS: We evaluated the hepatic p63 levels in different mouse models of steatohepatitis with fibrosis induced by diet. Next, we used virogenetic approaches to manipulate the expression of TAp63 in adult mice under diet-induced steatohepatitis with fibrosis and characterized the disease condition. Finally, we performed proteomics analysis in mice with overexpression and knockdown of hepatic TAp63. RESULTS: Levels of TAp63, but not of ΔN isoform, are increased in the liver of mice with diet-induced steatohepatitis with fibrosis. Both preventive and interventional strategies for the knockdown of hepatic TAp63 significantly ameliorated diet-induced steatohepatitis with fibrosis in mice fed a methionine- and choline-deficient diet (MCDD) and choline deficient and high fat diet (CDHFD). The overexpression of hepatic TAp63 in mice aggravated the liver condition in mice fed a CDHFD. Proteomic analysis in the liver of these mice revealed alteration in multiple proteins and pathways, such as oxidative phosphorylation, antioxidant activity, peroxisome function and LDL clearance. CONCLUSIONS: These results indicate that liver TAp63 plays a critical role in the progression of diet-induced steatohepatitis with fibrosis, and its inhibition ameliorates the disease.


Assuntos
Fígado Gorduroso , Cirrose Hepática , Fígado , Camundongos Endogâmicos C57BL , Animais , Camundongos , Fígado/metabolismo , Fígado/patologia , Masculino , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Modelos Animais de Doenças , Dieta Hiperlipídica/efeitos adversos , Transativadores/metabolismo , Transativadores/genética , Proteômica , Metionina/deficiência , Metionina/metabolismo
9.
Cell Rep Med ; 5(2): 101401, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38340725

RESUMO

The p63 protein has pleiotropic functions and, in the liver, participates in the progression of nonalcoholic fatty liver disease (NAFLD). However, its functions in hepatic stellate cells (HSCs) have not yet been explored. TAp63 is induced in HSCs from animal models and patients with liver fibrosis and its levels positively correlate with NAFLD activity score and fibrosis stage. In mice, genetic depletion of TAp63 in HSCs reduces the diet-induced liver fibrosis. In vitro silencing of p63 blunts TGF-ß1-induced HSCs activation by reducing mitochondrial respiration and glycolysis, as well as decreasing acetyl CoA carboxylase 1 (ACC1). Ectopic expression of TAp63 induces the activation of HSCs and increases the expression and activity of ACC1 by promoting the transcriptional activity of HER2. Genetic inhibition of both HER2 and ACC1 blunt TAp63-induced activation of HSCs. Thus, TAp63 induces HSC activation by stimulating the HER2-ACC1 axis and participates in the development of liver fibrosis.


Assuntos
Células Estreladas do Fígado , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Ativação Metabólica , Cirrose Hepática/genética , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Fibrose , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo
10.
Cell Metab ; 35(9): 1630-1645.e5, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37541251

RESUMO

Neddylation is a post-translational mechanism that adds a ubiquitin-like protein, namely neural precursor cell expressed developmentally downregulated protein 8 (NEDD8). Here, we show that neddylation in mouse liver is modulated by nutrient availability. Inhibition of neddylation in mouse liver reduces gluconeogenic capacity and the hyperglycemic actions of counter-regulatory hormones. Furthermore, people with type 2 diabetes display elevated hepatic neddylation levels. Mechanistically, fasting or caloric restriction of mice leads to neddylation of phosphoenolpyruvate carboxykinase 1 (PCK1) at three lysine residues-K278, K342, and K387. We find that mutating the three PCK1 lysines that are neddylated reduces their gluconeogenic activity rate. Molecular dynamics simulations show that neddylation of PCK1 could re-position two loops surrounding the catalytic center into an open configuration, rendering the catalytic center more accessible. Our study reveals that neddylation of PCK1 provides a finely tuned mechanism of controlling glucose metabolism by linking whole nutrient availability to metabolic homeostasis.


Assuntos
Diabetes Mellitus Tipo 2 , Camundongos , Animais , Fosfoenolpiruvato/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Proteínas/metabolismo , Fígado/metabolismo , Lisina/metabolismo , Glucose/metabolismo
11.
Br J Nutr ; 108(12): 2286-95, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-22874082

RESUMO

The interruption of lactation for a short period, without the use of pharmacological substances or maternal separation, causes offspring malnutrition and hypoleptinaemia and programmes for metabolic disorders such as higher body weight and adiposity, hyperphagia, hyperleptinaemia and central leptin resistance in adulthood. Here, in order to clarify the mechanisms underlying the phenotype observed in adult early-weaned (EW) rats, we studied the expression of neuropeptide Y (NPY), agouti-related peptide (AgRP), pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) in different hypothalamic nuclei by immunohistochemistry and Western blot. In the EW group, the teats of lactating rats were blocked with a bandage to interrupt lactation during the last 3 d, while control pups had free access to milk throughout the entire lactation period. At age 180 d, EW offspring showed higher NPY staining in the paraventricular nucleus (PVN), as well as NPY protein content (+68 %) in total hypothalamus than control ones. AgRP showed no changes in staining or Western blot. POMC content was not affected; however, its distribution pattern was altered. CART-positive cells of EW offspring had lower immunoreactivity associated with reduced cell number in the PVN and lower protein content ( - 38 %) in total hypothalamus. The present data indicate that precocious weaning can imprint the neuronal circuitry, especially in the PVN, and cause a long-term effect on the expression of specific orexigenic and anorexigenic neuropeptides, such as NPY and CART, that can be caused by leptin resistance and are coherent with the hyperphagia observed in these animals.


Assuntos
Proteína Relacionada com Agouti/análise , Expressão Gênica , Proteínas do Tecido Nervoso/análise , Neuropeptídeo Y/análise , Núcleo Hipotalâmico Paraventricular/química , Desmame , Fatores Etários , Animais , Western Blotting , Feminino , Hipotálamo/química , Imuno-Histoquímica , Lactação , Masculino , Pró-Opiomelanocortina/análise , Ratos , Ratos Wistar
12.
Nat Metab ; 4(7): 901-917, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35879461

RESUMO

Early-life determinants are thought to be a major factor in the rapid increase of obesity. However, while maternal nutrition has been extensively studied, the effects of breastfeeding by the infant on the reprogramming of energy balance in childhood and throughout adulthood remain largely unknown. Here we show that delayed weaning in rat pups protects them against diet-induced obesity in adulthood, through enhanced brown adipose tissue thermogenesis and energy expenditure. In-depth metabolic phenotyping in this rat model as well as in transgenic mice reveals that the effects of prolonged suckling are mediated by increased hepatic fibroblast growth factor 21 (FGF21) production and tanycyte-controlled access to the hypothalamus in adulthood. Specifically, FGF21 activates GABA-containing neurons expressing dopamine receptor 2 in the lateral hypothalamic area and zona incerta. Prolonged breastfeeding thus constitutes a protective mechanism against obesity by affecting long-lasting physiological changes in liver-to-hypothalamus communication and hypothalamic metabolic regulation.


Assuntos
Aleitamento Materno , Obesidade , Animais , Feminino , Fatores de Crescimento de Fibroblastos , Humanos , Hipotálamo/metabolismo , Fígado/metabolismo , Camundongos , Obesidade/metabolismo , Obesidade/prevenção & controle , Ratos
13.
J Clin Invest ; 131(18)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34324439

RESUMO

Hypothalamic glucose sensing enables an organism to match energy expenditure and food intake to circulating levels of glucose, the main energy source of the brain. Here, we established that tanycytes of the arcuate nucleus of the hypothalamus, specialized glia that line the wall of the third ventricle, convert brain glucose supplies into lactate that they transmit through monocarboxylate transporters to arcuate proopiomelanocortin neurons, which integrate this signal to drive their activity and to adapt the metabolic response to meet physiological demands. Furthermore, this transmission required the formation of extensive connexin-43 gap junction-mediated metabolic networks by arcuate tanycytes. Selective suppression of either tanycytic monocarboxylate transporters or gap junctions resulted in altered feeding behavior and energy metabolism. Tanycytic intercellular communication and lactate production are thus integral to the mechanism by which hypothalamic neurons that regulate energy and glucose homeostasis efficiently perceive alterations in systemic glucose levels as a function of the physiological state of the organism.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Células Ependimogliais/metabolismo , Glucose/metabolismo , Ácido Láctico/metabolismo , Pró-Opiomelanocortina/metabolismo , Animais , Metabolismo Energético , Comportamento Alimentar/fisiologia , Junções Comunicantes/metabolismo , Técnicas de Silenciamento de Genes , Homeostase , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Neurológicos , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/antagonistas & inibidores , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Neurônios/metabolismo , Transdução de Sinais , Simportadores/antagonistas & inibidores , Simportadores/genética , Simportadores/metabolismo
14.
iScience ; 24(2): 102071, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33554072

RESUMO

Excessive consumption of high-fructose diets is associated with insulin resistance, obesity, and non-alcoholic fatty liver disease (NAFLD). However, fructose differentially affects hepatic regulation of lipogenesis in males and females. Hence, additional studies are necessary in order to find strategies taking gender disparities in fructose-induced liver damage into consideration. Although the eighth member of facilitated glucose transporters (GLUT8) has been linked to fructose-induced macrosteatosis in female mice, its contribution to the inflammatory state of NAFLD remains to be elucidated. Combining pharmacological, biochemical, and proteomic approaches, we evaluated the preventive effect of targeted liver GLUT8 silencing on liver injury in a mice female fructose-induced non-alcoholic steatohepatitis female mouse model. Liver GLUT8-knockdown attenuated fructose-induced ER stress, recovered liver inflammation, and dramatically reduced fatty acid content, in part, via the omega oxidation. Therefore, this study links GLUT8 with liver inflammatory response and suggests GLUT8 as a potential target for the prevention of NAFLD.

15.
Nat Commun ; 12(1): 5068, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34417460

RESUMO

p53 regulates several signaling pathways to maintain the metabolic homeostasis of cells and modulates the cellular response to stress. Deficiency or excess of nutrients causes cellular metabolic stress, and we hypothesized that p53 could be linked to glucose maintenance. We show here that upon starvation hepatic p53 is stabilized by O-GlcNAcylation and plays an essential role in the physiological regulation of glucose homeostasis. More specifically, p53 binds to PCK1 promoter and regulates its transcriptional activation, thereby controlling hepatic glucose production. Mice lacking p53 in the liver show a reduced gluconeogenic response during calorie restriction. Glucagon, adrenaline and glucocorticoids augment protein levels of p53, and administration of these hormones to p53 deficient human hepatocytes and to liver-specific p53 deficient mice fails to increase glucose levels. Moreover, insulin decreases p53 levels, and over-expression of p53 impairs insulin sensitivity. Finally, protein levels of p53, as well as genes responsible of O-GlcNAcylation are elevated in the liver of type 2 diabetic patients and positively correlate with glucose and HOMA-IR. Overall these results indicate that the O-GlcNAcylation of p53 plays an unsuspected key role regulating in vivo glucose homeostasis.


Assuntos
Acetilglucosamina/metabolismo , Glucose/metabolismo , Fígado/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Sequência de Bases , Restrição Calórica , Linhagem Celular , Colforsina/farmacologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Epinefrina/metabolismo , Glucagon/metabolismo , Glucocorticoides/metabolismo , Gluconeogênese/efeitos dos fármacos , Glicosilação , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Hidrocortisona/metabolismo , Hiperglicemia/complicações , Hiperglicemia/metabolismo , Resistência à Insulina , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/complicações , Obesidade/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Ácido Pirúvico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética
16.
Nutrition ; 32(7-8): 740-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27036610

RESUMO

OBJECTIVE: The aim of this study was to investigate whether serum concentrations of total saturated fatty acids (SFAs), polyunsaturated fatty acids (PUFAs), and their fractions are associated with plasma adiponectin and leptin concentrations throughout pregnancy. METHODS: A prospective cohort of 201 pregnant women was followed from gestational weeks 5 to 13, 20 to 26, and 30 to 36. Blood samples were collected at the three visits after 12 h of fasting. Fatty acid concentrations were determined using fast gas-liquid chromatography. Plasma adiponectin (µg/mL) and leptin (ng/dL) concentrations were evaluated using enzyme-linked immunosorbent assay kits. Statistical analyses included median adipokine concentrations according to the tertiles of fatty acid distribution and multiple linear mixed-effect models adjusted for body mass index, gestational age, total energy intake, alcohol consumption, and smoking. RESULTS: Women classified in the third SFA concentration tertile had lower median values of adiponectin compared with those in the first tertile ([first trimester: first tertile = 5.36; third tertile = 5.00]; [second trimester: first tertile = 6.39; third tertile = 4.47]; [third trimester: first tertile = 6.46; third tertile = 4.60]). Similar trends were observed for the 14:0, 16:0 and 18:0 fractions. In the multiple longitudinal models, total SFA (ß = -41.039; P = 0.008) and 16:0 were negatively associated with plasma adiponectin (16:0, ß = -0.511; P = 0.001). Total PUFA ω-6 (ß = 28.961; P = 0.002) and 18:2 ω-6 (ß = 0.259, P = 0.006) were positively associated with the adiponectin. Total SFA (ß = 0.110, P = 0.007), 14:0 (ß = 0.072, P = 0.011), and 20:3 ω-6 (ß = 0.039; P = 0.035) were positively associated with plasma leptin. CONCLUSIONS: Total serum SFA and the 16:0 fraction were negatively associated with plasma adiponectin and positively associated with leptin concentrations. Total ω-6 PUFA was positively associated only with plasma adiponectin concentrations throughout pregnancy.


Assuntos
Adiponectina/sangue , Ácidos Graxos/sangue , Leptina/sangue , Adulto , Índice de Massa Corporal , Brasil , Cromatografia Gasosa , Estudos de Coortes , Ensaio de Imunoadsorção Enzimática , Ácidos Graxos Insaturados/sangue , Feminino , Humanos , Gravidez , Estudos Prospectivos , Adulto Jovem
17.
Metabolism ; 63(3): 352-64, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24355624

RESUMO

OBJECTIVE: Obesity and osteoporosis seem to have a common pathogenesis, especially because bone and adipose tissue have common origins. Since early weaning (EW) decreases adipogenesis and osteogenesis in neonate, further programming for obesity and hyperleptinemia, we hypothesized that these changes in adipogenesis could affect bone metabolism. MATERIALS/METHODS: Lactating rats were separated into 3 groups: control - dams whose pups ate milk throughout lactation; mechanical EW (MEW) - dams were involved with a bandage interrupting suckling in the last 3days of lactation; pharmacological EW (PEW) - dams were bromocriptine-treated (0.5mg/twice a day via intraperitoneal injection) 3days before weaning. The adult offspring was subjected to dual-energy X-ray absorptiometry and bone tissue was also evaluated by computed tomography, microcomputed tomography and biomechanical tests, beyond serum analyses. RESULTS: MEW and PEW presented higher total bone mineral density (BMD), total bone mineral content, spine BMD and bone area in postnatal day 150 (PN150). In PN180, both groups also presented increase of these parameters and higher femur BMD and fourth lumbar vertebra (LV4) BMD, femoral head radiodensity and LV4 vertebral body radiodensity, trabecular number, stiffness and break load; lower trabecular separation, maximal deformation and break deformation, and also hyperleptinemia and higher visceral fat mass and 25-hydroxivitamin D, whereas parathyroid hormone was unchanged. Serum C-terminal cross-linked telopeptide of type I collagen was lower for both groups. CONCLUSIONS: Since both models program for obesity and increased bone mass, and leptin increases plasma vitamin D levels, probably leptin is the link between obesity and higher bone mass.


Assuntos
Densidade Óssea/fisiologia , Osso e Ossos/metabolismo , Osso e Ossos/fisiologia , Obesidade/metabolismo , Adipogenia/fisiologia , Animais , Colágeno Tipo I/metabolismo , Ingestão de Alimentos/fisiologia , Feminino , Lactação/metabolismo , Lactação/fisiologia , Masculino , Obesidade/sangue , Obesidade/fisiopatologia , Osteogênese/fisiologia , Hormônio Paratireóideo/metabolismo , Ratos , Ratos Wistar , Vitamina D/metabolismo , Desmame
18.
Physiol Behav ; 124: 100-6, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24246723

RESUMO

The most frequently used animal models of early weaning (EW) in rodents, maternal deprivation and pharmacological inhibition of lactation, present confounding factors, such as high stress or drug side effects, that can mask or interact with the effects of milk deprivation per se. Given these limitations, the development of new models of EW may provide useful information regarding the impact of a shortened period of breastfeeding on the endocrine and nervous systems, both during development and at adulthood. Using a model of EW in which lactating Wistar rat dams are wrapped with a bandage to block access to milk during the last three days of lactation, we have recently shown that the adult offspring presented higher body mass, hyperphagia, hyperleptinemia, leptin as well as insulin resistance, and higher adrenal catecholamine content at adulthood. Here, we used this EW model, which involves no pharmacological treatment or maternal separation, to analyze anxiety-like, novelty-seeking and memory/learning behavioral traits in the adult male offspring. To that end, animals were tested in the elevated plus maze, in the hole board arena and in the radial arm water maze. Except for an increased number of rearing events (a measure of vertical activity), no other behavioral differences were observed between EW and control animals. The contrasting behavioral results between the three EW models may be associated with differences in HPA axis function in the offspring at weaning, since it has been observed that bandaging does not affect corticosteronemia while maternal separation and pharmacological EW increase it.


Assuntos
Ansiedade/psicologia , Comportamento Exploratório , Aprendizagem em Labirinto , Memória , Desmame , Animais , Masculino , Modelos Animais , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA