Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 184(18): 4784-4818.e17, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34450027

RESUMO

Osteoarthritis affects over 300 million people worldwide. Here, we conduct a genome-wide association study meta-analysis across 826,690 individuals (177,517 with osteoarthritis) and identify 100 independently associated risk variants across 11 osteoarthritis phenotypes, 52 of which have not been associated with the disease before. We report thumb and spine osteoarthritis risk variants and identify differences in genetic effects between weight-bearing and non-weight-bearing joints. We identify sex-specific and early age-at-onset osteoarthritis risk loci. We integrate functional genomics data from primary patient tissues (including articular cartilage, subchondral bone, and osteophytic cartilage) and identify high-confidence effector genes. We provide evidence for genetic correlation with phenotypes related to pain, the main disease symptom, and identify likely causal genes linked to neuronal processes. Our results provide insights into key molecular players in disease processes and highlight attractive drug targets to accelerate translation.


Assuntos
Predisposição Genética para Doença , Genética Populacional , Osteoartrite/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Osteoartrite/tratamento farmacológico , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Caracteres Sexuais , Transdução de Sinais/genética
3.
Am J Hum Genet ; 109(7): 1255-1271, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35679866

RESUMO

Osteoarthritis is a complex degenerative joint disease. Here, we investigate matched genotype and methylation profiles of primary chondrocytes from macroscopically intact (low-grade) and degraded (high-grade) osteoarthritis cartilage and from synoviocytes collected from 98 osteoarthritis-affected individuals undergoing knee replacement surgery. We perform an epigenome-wide association study of knee cartilage degeneration and report robustly replicating methylation markers, which reveal an etiologic mechanism linked to the migration of epithelial cells. Using machine learning, we derive methylation models of cartilage degeneration, which we validate with 82% accuracy in independent data. We report a genome-wide methylation quantitative trait locus (mQTL) map of articular cartilage and synovium and identify 18 disease-grade-specific mQTLs in osteoarthritis cartilage. We resolve osteoarthritis GWAS loci through causal inference and colocalization analyses and decipher the epigenetic mechanisms that mediate the effect of genotype on disease risk. Together, our findings provide enhanced insights into epigenetic mechanisms underlying osteoarthritis in primary tissues.


Assuntos
Cartilagem Articular , Osteoartrite , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Metilação de DNA/genética , Epigenoma , Humanos , Osteoartrite/genética , Osteoartrite/metabolismo
4.
Hum Mol Genet ; 31(12): 2090-2105, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35088088

RESUMO

Osteoarthritis is a prevalent joint disease and a major cause of disability worldwide with no curative therapy. Development of disease-modifying therapies requires a better understanding of the molecular mechanisms underpinning disease. A hallmark of osteoarthritis is cartilage degradation. To define molecular events characterizing osteoarthritis at the whole transcriptome level, we performed deep RNA sequencing in paired samples of low- and high-osteoarthritis grade knee cartilage derived from 124 patients undergoing total joint replacement. We detected differential expression between low- and high-osteoarthritis grade articular cartilage for 365 genes and identified a 38-gene signature in osteoarthritis cartilage by replicating our findings in an independent dataset. We also found differential expression for 25 novel long non-coding RNA genes (lncRNAs) and identified potential lncRNA interactions with RNA-binding proteins in osteoarthritis. We assessed alterations in the relative usage of individual gene transcripts and identified differential transcript usage for 82 genes, including ABI3BP, coding for an extracellular matrix protein, AKT1S1, a negative regulator of the mTOR pathway and TPRM4, coding for a transient receptor potential channel. We further assessed genome-wide differential splicing, for the first time in osteoarthritis, and detected differential splicing for 209 genes, which were enriched for extracellular matrix, proteoglycans and integrin surface interactions terms. In the largest study of its kind in osteoarthritis, we find that isoform and splicing changes, in addition to extensive differences in both coding and non-coding sequence expression, are associated with disease and demonstrate a novel layer of genomic complexity to osteoarthritis pathogenesis.


Assuntos
Osteoartrite , RNA Longo não Codificante , Processamento Alternativo/genética , Perfilação da Expressão Gênica , Humanos , Osteoartrite/genética , Isoformas de Proteínas/genética , RNA Longo não Codificante/genética
5.
Arch Biochem Biophys ; 753: 109919, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307316

RESUMO

Ketoconazole (Ke) is an important antifungal drug, and two of its diphenylphosphinemethyl derivatives (KeP: Ph2PCH2-Ke and KeOP: Ph2P(O)CH2-Ke) have shown improved antifungal activity, namely against a yeast strain lacking ergosterol, suggesting alternative modes of action for azole compounds. In this context, the interactions of these compounds with a model of the cell membrane were investigated, using POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) large unilamellar vesicles and taking advantage of the intrinsic fluorescence of Ke, KeP and KeOP. Steady-state fluorescence spectra and anisotropy, including partition and aggregation studies, as well as fluorescence lifetime measurements, were carried out. In addition, the ability of the compounds to increase membrane permeability was assessed through carboxyfluorescein leakage. The membrane/water mole fraction partition coefficients (Kp,x): (3.31 ± 0.36) x105, (8.31 ± 1.60) x105 and (4.66 ± 0.72) x106, for Ke, KeP and KeOP, respectively, show that all three compounds have moderate to high affinity for the lipid bilayer. Moreover, KeP, and particularly KeOP interact more efficiently with POPC bilayers than Ke, which correlates well with their in vitro antifungal activity. Furthermore, although the three compounds disturb the lipid bilayer, KeOP is the quickest and most efficient one. Hence, the higher affinity and ability to permeabilize the membrane of KeOP when compared to that of KeP, despite the higher lipophilicity of the latter, points to an important role of Ph2P(O)CH2- oxygen. Overall, this work suggests that membrane interactions are important for the antifungal activity of these azoles and should be considered in the design of new therapeutic agents.


Assuntos
Antifúngicos , Cetoconazol , Antifúngicos/farmacologia , Cetoconazol/farmacologia , Bicamadas Lipídicas , Fosfatidilcolinas
6.
Trop Anim Health Prod ; 56(2): 90, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413494

RESUMO

The aims of this study were to estimate the genetic parameters for fat-to-protein ratio (F:P) within the first 90 days of lactation and to examine their genetic associations with daily milk yield (MY), somatic cell score (SCS), and calving interval between the first and second calving (IFSC) and between the second and third calving (ISTC) during the first three lactations of Holstein cows. We utilized 200,626 production-related data officially recorded from 77,436 cows milked two or three times a day from 2012 to 2022, sourced from the Holstein Cattle Breeders Association of Paraná State, Brazil. The (co)variance components were estimated using animal models, adopting the restricted maximum likelihood (REML) method with single-trait analysis (for heritability and repeatability) and two-trait analysis (for genetic and phenotypic correlations), per lactation. Regardless of lactation number, heritability estimates were relatively low, ranging from 0.08 ± 0.005 to 0.10 ± 0.003 for F:P; 0.08 ± 0.01 to 0.18 ± 0.005 for MY; 0.04 ± 0.01 to 0.07 ± 0.004 for SCS; and 0.03 ± 0.01 for both IFSC and ISTC. Repeatability estimates within the same lactation were low for F:P (ranging from 0.17 ± 0.002 to 0.19 ± 0.03), high for MY (between 0.50 ± 0.003 and 0.53 ± 0.002), and moderate to high for SCS (between 0.39 ± 0.003 and 0.44 ± 0.004). Genetic correlations between F:P and MY ranged from -0.26 ± 0.03 to -0.15 ± 0.02; F:P and SCS, from -0.06 ± 0.03 to -0.03 ± 0.08; F:P and IFSC, 0.31 ± 0.01; F:P and ISTC, 0.20 ± 0.01; MY and IFSC, 0.24 ± 0.05; and MY and ISTC, 0.13 ± 0.08. The fat-to-protein ratio during early lactation showed low genetic variability, regardless of lactation number. Furthermore, it was genetically correlated with MY, IFSC, and ISTC, although there is an antagonistic and unfavorable correlation between traits that can limit genetic progress.


Assuntos
Lactação , Leite , Feminino , Bovinos/genética , Animais , Brasil , Lactação/genética , Fenótipo
7.
Ann Rheum Dis ; 82(7): 963-973, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36927643

RESUMO

OBJECTIVES: In osteoarthritis, methylation of lysine 79 on histone H3 (H3K79me), a protective epigenetic mechanism, is reduced. Histone methylation levels are dynamically regulated by histone methyltransferases and demethylases. Here, we aimed to identify which histone demethylases regulate H3K79me in cartilage and investigate whether their targeting protects against osteoarthritis. METHODS: We determined histone demethylase expression in human non-osteoarthritis and osteoarthritis cartilage using qPCR. The role of histone demethylase families and subfamilies on H3K79me was interrogated by treatment of human C28/I2 chondrocytes with pharmacological inhibitors, followed by western blot and immunofluorescence. We performed C28/I2 micromasses to evaluate effects on glycosaminoglycans by Alcian blue staining. Changes in H3K79me after destabilisation of the medial meniscus (DMM) in mice were determined by immunohistochemistry. Daminozide, a KDM2/7 subfamily inhibitor, was intra-articularly injected in mice upon DMM. Histone demethylases targeted by daminozide were individually silenced in chondrocytes to dissect their role on H3K79me and osteoarthritis. RESULTS: We documented the expression signature of histone demethylases in human non-osteoarthritis and osteoarthritis articular cartilage. Inhibition of Jumonji-C demethylase family increased H3K79me in human chondrocytes. Blockade of KDM2/7 histone demethylases with daminozide increased H3K79me and glycosaminoglycans. In mouse articular cartilage, H3K79me decayed rapidly upon induction of joint injury. Early and sustained intra-articular treatment with daminozide enhanced H3K79me and exerted protective effects in mice upon DMM. Individual silencing of KDM7A/B demethylases in human chondrocytes demonstrated that KDM7A/B mediate protective effects of daminozide on H3K79me and osteoarthritis. CONCLUSION: Targeting KDM7A/B histone demethylases could be an attractive strategy to protect joints against osteoarthritis.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Camundongos , Animais , Histona Desmetilases/metabolismo , Histona Desmetilases/farmacologia , Metilação , Histona Desmetilases com o Domínio Jumonji , Osteoartrite/metabolismo , Condrócitos/metabolismo , Cartilagem Articular/metabolismo , Glicosaminoglicanos
8.
Rheumatology (Oxford) ; 62(4): 1669-1676, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36040165

RESUMO

OBJECTIVES: To present an unbiased approach to identify positional transcript single nucleotide polymorphisms (SNPs) of osteoarthritis (OA) risk loci by allelic expression imbalance (AEI) analyses using RNA sequencing of articular cartilage and subchondral bone from OA patients. METHODS: RNA sequencing from 65 articular cartilage and 24 subchondral bone from OA patients was used for AEI analysis. AEI was determined for all genes present in the 100 regions reported by the genome-wide association studies (GWAS) catalog that were also expressed in cartilage or bone. The count fraction of the alternative allele (φ) was calculated for each heterozygous individual with the risk SNP or with the SNP in linkage disequilibrium (LD) with it (r2 > 0.6). Furthermore, a meta-analysis was performed to generate a meta-φ (null hypothesis median φ = 0.49) and P-value for each SNP. RESULTS: We identified 30 transcript SNPs (28 in cartilage and two in subchondral bone) subject to AEI in 29 genes. Notably, 10 transcript SNPs were located in genes not previously reported in the GWAS catalog, including two long intergenic non-coding RNAs (lincRNAs), MALAT1 (meta-φ = 0.54, FDR = 1.7×10-4) and ILF3-DT (meta-φ = 0.6, FDR = 1.75×10-5). Moreover, 12 drugs were interacting with seven genes displaying AEI, of which seven drugs have been already approved. CONCLUSIONS: By prioritizing proxy transcript SNPs that mark AEI in cartilage and/or subchondral bone at loci harbouring GWAS signals, we present an unbiased approach to identify the most likely functional OA risk-SNP and gene. We identified 10 new potential OA risk genes ready for further translation towards underlying biological mechanisms.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Cartilagem Articular/metabolismo , Estudo de Associação Genômica Ampla , Osteoartrite/genética , Osteoartrite/metabolismo , Alelos
9.
Rheumatology (Oxford) ; 62(2): 894-904, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35532170

RESUMO

OBJECTIVE: To identify FN1 transcripts associated with OA pathophysiology and investigate the downstream effects of modulating FN1 expression and relative transcript ratio. METHODS: FN1 transcriptomic data was obtained from our previously assessed RNA-seq dataset of lesioned and preserved OA cartilage samples from the Research osteoArthritis Articular Cartilage (RAAK) study. Differential transcript expression analysis was performed on all 27 FN1 transcripts annotated in the Ensembl database. Human primary chondrocytes were transduced with lentiviral particles containing short hairpin RNA (shRNA) targeting full-length FN1 transcripts or non-targeting shRNA. Subsequently, matrix deposition was induced in our 3D in vitro neo-cartilage model. Effects of changes in the FN1 transcript ratio on sulphated glycosaminoglycan (sGAG) deposition were investigated by Alcian blue staining and dimethylmethylene blue assay. Moreover, gene expression levels of 17 cartilage-relevant markers were determined by reverse transcription quantitative polymerase chain reaction. RESULTS: We identified 16 FN1 transcripts differentially expressed between lesioned and preserved cartilage. FN1-208, encoding migration-stimulating factor, was the most significantly differentially expressed protein coding transcript. Downregulation of full-length FN1 and a concomitant increased FN1-208 ratio resulted in decreased sGAG deposition as well as decreased ACAN and COL2A1 and increased ADAMTS-5, ITGB1 and ITGB5 gene expression levels. CONCLUSION: We show that full-length FN1 downregulation and concomitant relative FN1-208 upregulation was unbeneficial for deposition of cartilage matrix, likely due to decreased availability of the classical RGD (Arg-Gly-Asp) integrin-binding site of fibronectin.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Fibronectinas/genética , Fibronectinas/metabolismo , Osteoartrite/genética , Osteoartrite/metabolismo , Condrócitos/metabolismo , Cartilagem Articular/metabolismo , RNA Interferente Pequeno
10.
Mol Pharm ; 20(2): 918-928, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36700695

RESUMO

Increasing evidence suggests a critical role of lipids in both the mechanisms of toxicity and resistance of cells to platinum(II) complexes. In particular, cisplatin and other analogues were reported to interact with lipids and transiently promote lipid phase changes both in the bulk membranes and in specific membrane domains. However, these processes are complex and not fully understood. In this work, cisplatin and its cationic species formed at pH 7.4 in low chloride concentrations were tested for their ability to induce phase changes in model membranes with different lipid compositions. Fluorescent probes that partition to different lipid phases were used to report on the fluidity of the membrane, and a leakage assay was performed to evaluate the effect of cisplatin in the permeability of these vesicles. The results showed that platinum(II) complex effects on membrane fluidity depend on membrane lipid composition and properties, promoting a stronger decrease in the fluidity of membranes containing gel phase. Moreover, at high concentration, these complexes were prone to alter the permeability of lipid membranes without inducing their collapse or aggregation.


Assuntos
Cisplatino , Bicamadas Lipídicas , Bicamadas Lipídicas/química , Cisplatino/farmacologia , Platina/farmacologia , Fluidez de Membrana , Permeabilidade
11.
J Med Internet Res ; 25: e45922, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37428532

RESUMO

BACKGROUND: Oral anticoagulation is the cornerstone treatment of several diseases. Its management is often challenging, and different telemedicine strategies have been implemented to support it. OBJECTIVE: The aim of the study is to systematically review the evidence on the impact of telemedicine-based oral anticoagulation management compared to usual care on thromboembolic and bleeding events. METHODS: Randomized controlled trials were searched in 5 databases from inception to September 2021. Two independent reviewers performed study selection and data extraction. Total thromboembolic events, major bleeding, mortality, and time in therapeutic range were assessed. Results were pooled using random effect models. RESULTS: In total, 25 randomized controlled trials were included (n=25,746 patients) and classified as moderate to high risk of bias by the Cochrane tool. Telemedicine resulted in lower rates of thromboembolic events, though not statistically significant (n=13 studies, relative risk [RR] 0.75, 95% CI 0.53-1.07; I2=42%), comparable rates of major bleeding (n=11 studies, RR 0.94, 95% CI 0.82-1.07; I2=0%) and mortality (n=12 studies, RR 0.96, 95% CI 0.78-1.20; I2=11%), and an improved time in therapeutic range (n=16 studies, mean difference 3.38, 95% CI 1.12-5.65; I2=90%). In the subgroup of the multitasking intervention, telemedicine resulted in an important reduction of thromboembolic events (RR 0.20, 95% CI 0.08-0.48). CONCLUSIONS: Telemedicine-based oral anticoagulation management resulted in similar rates of major bleeding and mortality, a trend for fewer thromboembolic events, and better anticoagulation quality compared to standard care. Given the potential benefits of telemedicine-based care, such as greater access to remote populations or people with ambulatory restrictions, these findings may encourage further implementation of eHealth strategies for anticoagulation management, particularly as part of multifaceted interventions for integrated care of chronic diseases. Meanwhile, researchers should develop higher-quality evidence focusing on hard clinical outcomes, cost-effectiveness, and quality of life. TRIAL REGISTRATION: PROSPERO International Prospective Register of Systematic Reviews CRD42020159208; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=159208.


Assuntos
Telemedicina , Tromboembolia , Humanos , Anticoagulantes/uso terapêutico , Qualidade de Vida , Hemorragia/induzido quimicamente , Hemorragia/tratamento farmacológico , Tromboembolia/tratamento farmacológico , Tromboembolia/prevenção & controle , Tromboembolia/induzido quimicamente
12.
Trop Anim Health Prod ; 55(6): 404, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957330

RESUMO

Corn grain particle size has the potential to influence the performance of lactating dairy cows and the overall profitability of a dairy farm. The objective of this study was to evaluate the productive performance of lactating cows fed diets containing finely or coarsely ground corn grain. Fifty lactating Holstein cows (n = 50; 10 primiparous and 40 multiparous), averaging (mean ± standard deviation, SD) 658 ± 64 kg of BW, 38.8 ± 7.3 kg of milk/d, and 155 ± 80 DIM, were fed diets with finely ground corn grain (FGC) or coarsely ground corn grain (CGC) in a randomized block design with a 28-d treatment period. Finely and coarsely ground corn grain had an average particle size of 660 and 915 µm, respectively. Dry matter intake (DMI) was reduced (p < 0.01) for cows fed FGC (22.1 vs. 21.2 kg d-1). Milk yield and efficiency were not affected by treatments (37.9 vs. 36.8 kg d-1; p = 0.12 and 1.78 vs. 1.79; p = 0.15). Concentrations of milk protein and fat, as well as other milk solids, were unaffected (p > 0.05) by treatments. Fecal starch (FS) concentrations were greater (p < 0.01) for cows fed CGC (7.0 vs. 4.9%), whereas plasma concentrations of D-lactate were greater (p < 0.05) for cows fed FGC (98.5 vs. 79.7 µM). Overall, feeding finely ground corn grain increased total-tract starch digestibility and reduced DMI while maintaining milk yield.


Assuntos
Lactação , Zea mays , Animais , Bovinos , Feminino , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Dieta/veterinária , Digestão , Tamanho da Partícula , Rúmen/metabolismo , Silagem , Amido/metabolismo , Zea mays/metabolismo
13.
Mol Genet Genomics ; 297(2): 419-435, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35061071

RESUMO

The Brazilian population is a product of asymmetric admixture among European men and Amerindian and African women. However, Brazilian subcontinental ancestry is scarcely documented, especially regarding its African roots. Here, we aimed to unveil the uniparental continental and subcontinental contributions from distinct Brazilian regions, including South (n = 43), Southeast (n = 71), the poorly genetically characterized Central-Western region (n = 323), and a subset of unique Brazilian Amerindians (n = 24), in the context of their genome-wide ancestral contributions. The overwhelming majority of European Y haplogroups (85%) contrast sharply with the predominant African and Amerindian mtDNA haplogroups (73.2%) in admixed populations, whereas in Amerindians, non-Native haplogroups could only be detected through the paternal line. Our in-depth investigation of uniparental markers showed signals of an Andean and Central-Brazilian Amerindian maternal contribution to Southeastern and Central-Western Brazil (83.1 ± 2.1% and 56.9 ± 0.2%, respectively), the last having the highest paternal Amerindian ancestry yet described for an admixed Brazilian region (9.7%) and contrasting with higher Southern-Brazilian Amerindian contribution to Southern Brazil (59.6 ± 1%). Unlike the higher African Bantu contribution previously reported for the South and Southeast, a relevant Western African non-Bantu contribution was detected in those regions (85.7 ± 5% and 71.8 ± 10.8% respectively). In contrast, a higher Bantu contribution was described for the first time in the Central-West (64.8 ± 1.3% maternal and 86.9 ± 9.6% paternal). We observed sex-biased signatures consistent with the historically recorded Brazilian colonization and added new insights in the subcontinental maternal ancestry of Brazilians from regions never studied at this level.


Assuntos
População Negra , DNA Mitocondrial , População Negra/genética , Brasil , DNA Mitocondrial/genética , Feminino , Genética Populacional , Haplótipos/genética , Humanos , Masculino
14.
Rheumatology (Oxford) ; 61(2): 856-864, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33989379

RESUMO

OBJECTIVES: OA is a complex genetic disease with different risk factors contributing to its development. One of the genes, TNFRSF11B, previously identified with gain-of-function mutation in a family with early-onset OA with chondrocalcinosis, is among the highest upregulated genes in lesioned OA cartilage (RAAK-study). Here, we determined the role of TNFRSF11B overexpression in development of OA. METHODS: Human primary articular chondrocytes (9 donors RAAK study) were transduced using lentiviral particles with or without TNFRSF11B. Cells were cultured for 1 week in a 3 D in-vitro chondrogenic model. TNFRSF11B overexpression was confirmed by RT-qPCR, immunohistochemistry and ELISA. Effects of TNFRSF11B overexpression on cartilage matrix deposition, matrix mineralization, and genes highly correlated to TNFRSF11B in RNA-sequencing dataset (r >0.75) were determined by RT-qPCR. Additionally, glycosaminoglycans and collagen deposition were visualized with Alcian blue staining and immunohistochemistry (COL1 and COL2). RESULTS: Overexpression of TNFRSF11B resulted in strong upregulation of MMP13, COL2A1 and COL1A1. Likewise, mineralization and osteoblast characteristic markers RUNX2, ASPN and OGN showed a consistent increase. Among 30 genes highly correlated to TNFRSF11B, expression of only eight changed significantly, with BMP6 showing the highest increase (9-fold) while expression of RANK and RANKL remained unchanged indicating previously unknown downstream pathways of TNFRSF11B in cartilage. CONCLUSION: Results of our 3D in vitro chondrogenesis model indicate that upregulation of TNFRSF11B in lesioned OA cartilage may act as a direct driving factor for chondrocyte to osteoblast transition observed in OA pathophysiology. This transition does not appear to act via the OPG/RANK/RANKL triad common in bone remodeling.


Assuntos
Doenças das Cartilagens/etiologia , Osteoartrite/etiologia , Osteoprotegerina/metabolismo , Idoso , Cartilagem/metabolismo , Doenças das Cartilagens/metabolismo , Células Cultivadas , Condrócitos/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Osteoartrite/metabolismo , Reação em Cadeia da Polimerase
15.
Rheumatology (Oxford) ; 62(1): 457-466, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-35383365

RESUMO

OBJECTIVES: To investigate whether the deiodinase inhibitor iopanoic acid (IOP) has chondroprotective properties, a mechanical stress induced model of human aged explants was used to test both repeated dosing and slow release of IOP. METHODS: Human osteochondral explants subjected to injurious mechanical stress (65%MS) were treated with IOP or IOP encapsulated in poly lactic-co-glycolic acid-polyethylene glycol nanoparticles (NP-IOP). Changes to cartilage integrity and signalling were determined by Mankin scoring of histology, sulphated glycosaminoglycan (sGAG) release and expression levels of catabolic, anabolic and hypertrophic markers. Subsequently, on a subgroup of samples, RNA sequencing was performed on 65%MS (n = 14) and 65%MS+IOP (n = 7) treated cartilage to identify IOP's mode of action. RESULTS: Damage from injurious mechanical stress was confirmed by increased cartilage surface damage in the Mankin score, increased sGAG release, and consistent upregulation of catabolic markers and downregulation of anabolic markers. IOP and, though less effective, NP-IOP treatment, reduced MMP13 and increased COL2A1 expression. In line with this, IOP and NP-IOP reduced cartilage surface damage induced by 65%MS, while only IOP reduced sGAG release from explants subjected to 65%MS. Lastly, differential expression analysis identified 12 genes in IOP's mode of action to be mainly involved in reducing metabolic processes (INSIG1, DHCR7, FADS1 and ACAT2) and proliferation and differentiation (CTGF, BMP5 and FOXM1). CONCLUSION: Treatment with the deiodinase inhibitor IOP reduced detrimental changes of injurious mechanical stress. In addition, we identified that its mode of action was likely on metabolic processes, cell proliferation and differentiation.


Assuntos
Cartilagem Articular , Glândula Tireoide , Humanos , Glândula Tireoide/metabolismo , Iodeto Peroxidase/metabolismo , Iodeto Peroxidase/farmacologia , Transdução de Sinais , Cartilagem Articular/metabolismo , Condrócitos/metabolismo
16.
Rheumatology (Oxford) ; 61(7): 3023-3032, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34730803

RESUMO

OBJECTIVE: To gain insight in the expression profile of long non-coding RNAs (lncRNAs) in OA subchondral bone. METHODS: RNA sequencing data of macroscopically preserved and lesioned OA subchondral bone of patients that underwent joint replacement surgery due to OA (N = 22 pairs; 5 hips, 17 knees, Research osteoArthrits Articular Tissue (RAAK study) was run through an in-house pipeline to detect expression of lncRNAs. Differential expression analysis between preserved and lesioned bone was performed. Spearman correlations were calculated between differentially expressed lncRNAs and differentially expressed mRNAs identified previously in the same samples. Primary osteogenic cells were transfected with locked nucleic acid (LNA) GapmeRs targeting AC005165.1 lncRNA, to functionally investigate its potential mRNA targets. RESULTS: In total, 2816 lncRNAs were well-expressed in subchondral bone and we identified 233 lncRNAs exclusively expressed in knee and 307 lncRNAs exclusively in hip. Differential expression analysis, using all samples (N = 22 pairs; 5 hips, 17 knees), resulted in 21 differentially expressed lncRNAs [false discovery rate (FDR) < 0.05, fold change (FC) range 1.19-7.39], including long intergenic non-protein coding RNA (LINC) 1411 (LINC01411, FC = 7.39, FDR = 2.20 × 10-8), AC005165.1 (FC = 0.44, FDR = 2.37 × 10-6) and empty spiracles homeobox 2 opposite strand RNA (EMX2OS, FC = 0.41, FDR = 7.64 × 10-3). Among the differentially expressed lncRNAs, five were also differentially expressed in articular cartilage, including AC005165.1, showing similar direction of effect. Downregulation of AC005165.1 in primary osteogenic cells resulted in consistent downregulation of highly correlated frizzled related protein (FRZB). CONCLUSION: The current study identified a novel lncRNA, AC005165.1, being dysregulated in OA articular cartilage and subchondral bone. Downregulation of AC005165.1 caused a decreased expression of OA risk gene FRZB, an important member of the wnt pathway, suggesting that AC005165.1 could be an attractive potential therapeutic target with effects in articular cartilage and subchondral bone.


Assuntos
Cartilagem Articular , Peptídeos e Proteínas de Sinalização Intracelular , Osteoartrite do Joelho , Osteoartrite , RNA Longo não Codificante , Osso e Ossos/metabolismo , Cartilagem Articular/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Articulação do Joelho/metabolismo , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite do Joelho/diagnóstico , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/cirurgia , RNA Longo não Codificante/genética , RNA Mensageiro/genética
17.
J Dairy Sci ; 105(4): 3222-3233, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35151478

RESUMO

Few studies have been published on the body growth of replacement dairy heifers from Jersey (JER) and Holstein × Gyr (H × G) breeds, as most of them have focused on Holstein (HOL) heifers. In addition, HOL genetics vary significantly across countries. Our goal was to study the body growth curves of 3 distinct genetic groups of heifers (HOL, H × G, and JER) using data from Brazilian commercial dairy herds. Heart girth [to estimate body weight (BW)], hip height (HH), and withers height (WH) were measured. Weights (heifers and cows) and heights (only heifers) were collected from animals in several herds for each genetic group to model and describe the growth rates, mature body weight (MBW), weights, and heights for the recommended age at first breeding (RAFB) and first calving (RAFC). The RAFB values for HOL, H × G, and JER cattle were 15, 18, and 13 mo, respectively. The RAFC values for HOL, H × G, and JER cattle were 24, 27, and 22 mo, respectively. Data were obtained from 18 dairy farms located in 4 Brazilian states and analyzed using nonlinear modeling. Data were collected from 2,266 animals: 878 HOL, 610 H × G, and 778 JER cattle. We observed different body growth patterns in each genetic group. Jersey cattle matured earlier than HOL and H × G, especially for BW and HH. Mature BW of the HOL, H × G, and JER cattle was 681, 607, and 440 kg, respectively. All genetic groups reached the recommended BW at RAFB. However, the genetic groups did not reach the recommended BW at RAFC. Average daily weight gain from weaning to RAFB was 0.84, 0.53, and 0.54 kg/d for HOL, H × G, and JER cattle, respectively. Average daily gain from RAFB to RAFC was 0.53, 0.42, and 0.48 kg/d for HOL, H × G, and JER cattle, respectively. The HH at RAFB and RAFC were 130 and 139 cm for HOL, 130 and 137 cm for H × G, and 114 and 124 cm for JER. Withers height at RAFB and RAFC were 125 and 134 cm, 125 and 134 cm, and 110 and 121 cm for HOL, H × G, and JER cattle, respectively. In general, the rearing practices were adequate to reach the recommended BW at RAFB but below the recommended BW at RAFC for all genetic groups. In addition, each genetic group demonstrated different body growth patterns, especially for BW.


Assuntos
Ingestão de Alimentos , Aumento de Peso , Animais , Peso Corporal , Brasil , Bovinos/genética , Feminino
18.
Sensors (Basel) ; 22(6)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35336275

RESUMO

Recent theoretical studies demonstrate the advantages of using decentralized architectures over traditional centralized architectures for real-time Power Distribution Systems (PDSs) operation. These advantages include the reduction of the amount of data to be transmitted and processed when performing state estimation in PDSs. The main contribution of this paper is to provide lab validation of the advantages and feasibility of decentralized monitoring of PDSs. Therefore, this paper presents an advanced trial emulating realistic conditions and hardware setup. More specifically, the paper proposes: (i) The laboratory development and implementation of an Advanced Measurement Infrastructure (AMI) prototype to enable the simulation of a smart grid. To emulate the information traffic between smart meters and distribution operation centers, communication modules, that enable the use of wireless networks for sending messages in real-time, are used, bridging concepts from both IoT and Edge Computing. (ii) The laboratory development and implementation of a decentralized architecture based on Embedded State Estimator Modules (ESEMs) are carried out. ESEMs manage information from smart meters at lower voltage networks, performing real-time state estimation in PDSs. Simulations performed on a real PDS with 208 buses (considering both medium and low voltage buses) have met the aims of this paper. The results show that by using ESEMs in a decentralized architecture, both the data transit through the communication network, as well as the computational requirements involved in monitoring PDSs in real-time, are reduced considerably without any loss of accuracy.


Assuntos
Sistemas Computacionais , Simulação por Computador , Meios de Cultura
19.
Ann Rheum Dis ; 80(3): 367-375, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33055079

RESUMO

BACKGROUND: Despite recent advances in the understanding of the genetic architecture of osteoarthritis (OA), only two genetic loci have been identified for OA of the hand, in part explained by the complexity of the different hand joints and heterogeneity of OA pathology. METHODS: We used data from the Rotterdam Study (RSI, RSII and RSIII) to create three hand OA phenotypes based on clustering patterns of radiographic OA severity to increase power in our modest discovery genome-wide association studies in the RS (n=8700), and sought replication in an independent cohort, the Framingham Heart Study (n=1203). We used multiple approaches that leverage different levels of information and functional data to further investigate the underlying biological mechanisms and candidate genes for replicated loci. We also attempted to replicate known OA loci at other joint sites, including the hips and knees. RESULTS: We found two novel genome-wide significant loci for OA in the thumb joints. We identified WNT9A as a possible novel causal gene involved in OA pathogenesis. Furthermore, several previously identified genetic loci for OA seem to confer risk for OA across multiple joints: TGFa, RUNX2, COL27A1, ASTN2, IL11 and GDF5 loci. CONCLUSIONS: We identified a robust novel genetic locus for hand OA on chromosome 1, of which WNT9A is the most likely causal gene. In addition, multiple genetic loci were identified to be associated with OA across multiple joints. Our study confirms the potential for novel insight into the genetic architecture of OA by using biologically meaningful stratified phenotypes.


Assuntos
Articulação da Mão , Osteoartrite , Proteínas Wnt , Análise por Conglomerados , Colágenos Fibrilares/genética , Estudo de Associação Genômica Ampla , Articulação da Mão/diagnóstico por imagem , Humanos , Osteoartrite/complicações , Osteoartrite/diagnóstico por imagem , Osteoartrite/genética , Fenótipo , Proteínas Wnt/genética
20.
Rheumatology (Oxford) ; 60(3): 1166-1175, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32885253

RESUMO

OBJECTIVE: To identify OA subtypes based on cartilage transcriptomic data in cartilage tissue and characterize their underlying pathophysiological processes and/or clinically relevant characteristics. METHODS: This study includes n = 66 primary OA patients (41 knees and 25 hips), who underwent a joint replacement surgery, from which macroscopically unaffected (preserved, n = 56) and lesioned (n = 45) OA articular cartilage were collected [Research Arthritis and Articular Cartilage (RAAK) study]. Unsupervised hierarchical clustering analysis on preserved cartilage transcriptome followed by clinical data integration was performed. Protein-protein interaction (PPI) followed by pathway enrichment analysis were done for genes significant differentially expressed between subgroups with interactions in the PPI network. RESULTS: Analysis of preserved samples (n = 56) resulted in two OA subtypes with n = 41 (cluster A) and n = 15 (cluster B) patients. The transcriptomic profile of cluster B cartilage, relative to cluster A (DE-AB genes) showed among others a pronounced upregulation of multiple genes involved in chemokine pathways. Nevertheless, upon investigating the OA pathophysiology in cluster B patients as reflected by differentially expressed genes between preserved and lesioned OA cartilage (DE-OA-B genes), the chemokine genes were significantly downregulated with OA pathophysiology. Upon integrating radiographic OA data, we showed that the OA phenotype among cluster B patients, relative to cluster A, may be characterized by higher joint space narrowing (JSN) scores and low osteophyte (OP) scores. CONCLUSION: Based on whole-transcriptome profiling, we identified two robust OA subtypes characterized by unique OA, pathophysiological processes in cartilage as well as a clinical phenotype. We advocate that further characterization, confirmation and clinical data integration is a prerequisite to allow for development of treatments towards personalized care with concurrently more effective treatment response.


Assuntos
Perfilação da Expressão Gênica , Osteoartrite do Quadril/genética , Osteoartrite do Joelho/genética , RNA Mensageiro/metabolismo , Idoso , Cartilagem Articular/metabolismo , Análise por Conglomerados , Regulação para Baixo , Feminino , Humanos , Masculino , Análise em Microsséries , Osteoartrite do Quadril/metabolismo , Osteoartrite do Joelho/metabolismo , Fenótipo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA