RESUMO
BACKGROUND: Next-generation sequencing has had a significant impact on genetic disease diagnosis, but the interpretation of the vast amount of genomic data it generates can be challenging. To address this, the American College of Medical Genetics and Genomics and the Association for Molecular Pathology have established guidelines for standardized variant interpretation. In this manuscript, we present the updated Hospital Israelita Albert Einstein Standards for Constitutional Sequence Variants Classification, incorporating modifications from leading genetics societies and the ClinGen initiative. RESULTS: First, we standardized the scientific publications, documents, and other reliable sources for this document to ensure an evidence-based approach. Next, we defined the databases that would provide variant information for the classification process, established the terminology for molecular findings, set standards for disease-gene associations, and determined the nomenclature for classification criteria. Subsequently, we defined the general rules for variant classification and the Bayesian statistical reasoning principles to enhance this process. We also defined bioinformatics standards for automated classification. Our workgroup adhered to gene-specific rules and workflows curated by the ClinGen Variant Curation Expert Panels whenever available. Additionally, a distinct set of specifications for criteria modulation was created for cancer genes, recognizing their unique characteristics. CONCLUSIONS: The development of an internal consensus and standards for constitutional sequence variant classification, specifically adapted to the Brazilian population, further contributes to the continuous refinement of variant classification practices. The aim of these efforts from the workgroup is to enhance the reliability and uniformity of variant classification.
Assuntos
Testes Genéticos , Variação Genética , Humanos , Estados Unidos , Mutação , Reprodutibilidade dos Testes , Teorema de Bayes , Genoma HumanoRESUMO
Brazilians are highly admixed with ancestry from Europe, Africa, America, and Asia and yet still underrepresented in genomic databanks. We hereby present a collection of exomic variants from 609 elderly Brazilians in a census-based cohort (SABE609) with comprehensive phenotyping. Variants were deposited in ABraOM (Online Archive of Brazilian Mutations), a Web-based public database. Population representative phenotype and genotype repositories are essential for variant interpretation through allele frequency filtering; since elderly individuals are less likely to harbor pathogenic mutations for early- and adult-onset diseases, such variant databases are of great interest. Among the over 2.3 million variants from the present cohort, 1,282,008 were high-confidence calls. Importantly, 207,621 variants were absent from major public databases. We found 9,791 potential loss-of-function variants with about 300 mutations per individual. Pathogenic variants on clinically relevant genes (ACMG) were observed in 1.15% of the individuals and were correlated with clinical phenotype. We conducted incidence estimation for prevalent recessive disorders based upon heterozygous frequency and concluded that it relies on appropriate pathogenicity assertion. These observations illustrate the relevance of collecting demographic data from diverse, poorly characterized populations. Census-based datasets of aged individuals with comprehensive phenotyping are an invaluable resource toward the improved understanding of variant pathogenicity.
Assuntos
Exoma , Genética Populacional , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Alelos , Brasil , Estudos de Coortes , Biologia Computacional , Bases de Dados Genéticas , Etnicidade , Feminino , Frequência do Gene , Variação Genética , Genótipo , Heterozigoto , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Mutação , FenótipoRESUMO
Hearing loss (HL) is a common sensory deficit in humans and represents an important clinical and social burden. We studied whole-genome sequencing data of a cohort of 2,097 individuals from the Brazilian Rare Genomes Project who were unaffected by hearing loss to investigate pathogenic and likely pathogenic variants associated with nonsyndromic hearing loss (NSHL). We found relevant frequencies of individuals harboring these alterations: 222 heterozygotes (10.59%) for sequence variants, 54 heterozygotes (2.58%) for copy-number variants (CNV), and four homozygotes (0.19%) for sequence variants. The top five most frequent genes and their corresponding combined allelic frequencies (AF) were GJB2 (AF = 1.57%), STRC (AF = 1%), OTOA (AF = 0.69%), TMPRSS3 (AF = 0.41%), and OTOF (AF = 0.29%). The most frequent sequence variant was GJB2:c.35del (AF = 0.72%), followed by OTOA:p. (Glu787Ter) (AF = 0.61%), while the most recurrent CNV was a microdeletion of 57.9 kb involving the STRC gene (AF = 0.91%). An important fraction of these individuals (n = 104; 4.96%) presented variants associated with autosomal dominant forms of NSHL, which may imply the development of some hearing impairment in the future. Using data from the heterozygous individuals for recessive forms and the Hardy-Weinberg equation, we estimated the population frequency of affected individuals with autosomal recessive NSHL to be 1:2,222. Considering that the overall prevalence of HL in adults ranges from 4-15% worldwide, our data indicate that an important fraction of this condition may be associated with a monogenic origin and dominant inheritance.
RESUMO
Large genomic databases of neurodevelopmental disorders (NDD) are helpful resources of genomic variations in complex and heterogeneous conditions, as Autism Spectrum Disorder (ASD). We evaluated the role of rare copy number variations (CNVs) and exonic de novo variants, in a molecularly unexplored Brazilian cohort of 30 ASD trios (n = 90), by performing a meta-analysis of our findings in more than 20,000 patients from NDD cohorts. We identified three pathogenic CNVs: two duplications on 1q21 and 17p13, and one deletion on 4q35. CNVs meta-analysis (n = 8,688 cases and n = 3,591 controls) confirmed 1q21 relevance by identifying duplications in other 16 ASD patients. Exome analysis led the identification of seven de novo variants in ASD genes (SFARI list): three loss-of-function pathogenic variants in CUL3, CACNA1H, and SHANK3; one missense pathogenic variant in KCNB1; and three deleterious missense variants in ATP10A, ANKS1B, and DOCK1. From the remaining 12 de novo variants in non-previous ASD genes, we prioritized PRPF8 and RBM14. Meta-analysis (n = 13,754 probands; n = 2,299 controls) identified six and two additional patients with validated de novo variants in PRPF8 and RBM14, respectively. By comparing the de novo variants with a previously established mutational rate model, PRPF8 showed nominal significance before multiple test correction (P = 0.039, P-value adjusted = 0.079, binomial test), suggesting its relevance to ASD. Approximately 60% of our patients presented comorbidities, and the diagnostic yield was estimated in 23% (7/30: three pathogenic CNVs and four pathogenic de novo variants). Our uncharacterized Brazilian cohort with tetra-hybrid ethnic composition was a valuable resource to validate and identify possible novel candidate loci. Autism Res 2020, 13: 199-206. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: We believed that to study an unexplored autistic population, such as the Brazilian, could help to find novel genes for autism. In order to test this idea, with our limited budget, we compared candidate genes obtained from genomic analyses of 30 children and their parents, with those of more than 20,000 individuals from international studies. Happily, we identified a genetic cause in 23% of our patients and suggest a possible novel candidate gene for autism (PRPF8).
Assuntos
Transtorno do Espectro Autista/genética , Adolescente , Adulto , Brasil , Criança , Pré-Escolar , Deleção Cromossômica , Estudos de Coortes , Variações do Número de Cópias de DNA/genética , Exoma/genética , Éxons/genética , Feminino , Predisposição Genética para Doença/genética , Humanos , Masculino , Adulto JovemRESUMO
OBJECTIVES: Noonan and Noonan-related syndromes are common autosomal dominant disorders with neuro-cardio-facial-cutaneous and developmental involvement. The objective of this article is to describe the most relevant tegumentary findings in a cohort of 41 patients with Noonan or Noonan-related syndromes and to detail certain aspects of the molecular mechanisms underlying ectodermal involvement. METHODS: A standard questionnaire was administered. A focused physical examination and a systematic review of clinical records was performed on all patients to verify the presence of tegumentary alterations. The molecular analysis of this cohort included sequencing of the following genes in all patients: PTPN1, SOS1, RAF1, KRAS, SHOC2 and BRAF. RESULTS: The most frequent tegumentary alterations were xeroderma (46%), photosensitivity (29%), excessive hair loss (24%), recurrent oral ulcers (22%), curly hair (20%), nevi (17%), markedly increased palmar and plantar creases (12%), follicular hyperkeratosis (12%), palmoplantar hyperkeratosis (10%), café-au-lait spots (10%) and sparse eyebrows (7%). Patients with mutations in PTPN11 had lower frequencies of palmar and plantar creases and palmar/plantar hyperkeratosis compared with the other patients. CONCLUSIONS: We observed that patients with mutations in genes directly involved in cell proliferation kinase cascades (SOS1, BRAF, KRAS and RAF1) had a higher frequency of hyperkeratotic lesions compared with patients with mutations in genes that have a more complex interaction with and modulation of cell proliferation kinase cascades (PTPN11).