Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 40(22): 12302-12315, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34436980

RESUMO

Chagas disease infects approximately seven million people worldwide. Benznidazole is effective only in the acute phase of the disease, with an average cure rate of 80% between acute and recent cases. Therefore, there is an urgent need to find new bioactive substances that can be effective against parasites without causing so many complications to the host. In this study, the triterpene 3ß-6ß-16ß-trihydroxilup-20 (29)-ene (CLF-1) was isolated from Combretum leprosum, and its molecular structure was determined by NMR and infrared spectroscopy. The CLF-1 was also evaluated in vitro and in silico as potential trypanocidal agent against epimastigote and trypomastigote forms of Trypanosoma cruzi (Y strain). The CLF-1 demonstrated good results highlighted by lower IC50 (76.0 ± 8.72 µM, 75.1 ± 11.0 µM, and 70.3 ± 45.4 µM) for epimastigotes at 24, 48 and 72 h, and LC50 (71.6 ± 11.6 µM) for trypomastigotes forms. The molecular docking study shows that the CLF-1 was able to interact with important TcGAPDH residues, suggesting that this natural compound may preferentially exert its effect by compromising the glycolytic pathway in T. cruzi. The ADMET study together with the MTT results indicated that the CLF-1 is well-absorbed in the intestine and has low toxicity. Thus, this work adds new evidence that CLF-1 can potentially be used as a candidate for the development of new options for the treatment of Chagas disease.Communicated by Ramaswamy H. Sarma.


Assuntos
Doença de Chagas , Combretum , Triterpenos , Tripanossomicidas , Trypanosoma cruzi , Humanos , Extratos Vegetais/química , Combretum/química , Triterpenos/farmacologia , Triterpenos/química , Simulação de Acoplamento Molecular , Doença de Chagas/tratamento farmacológico , Tripanossomicidas/farmacologia
2.
Zebrafish ; 17(2): 112-119, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32105571

RESUMO

Schinus terebinthifolius Raddi (Anacardiaceae) is popularly known in Brazil as aroeira-da-praia and has pharmacological use as an astringent, antidiarrheal, anti-inflammatory, depurative, diuretic, and antifebrile agent. Although the neuropathic antinociceptive potential of S. terebinthifolius fruits has already been investigated, this study is the first one to analyze the acute antinociceptive effect of the essential oil of S. terebinthifolius (female) leaves (EOFSt) on adult zebrafish. EOFSt was submitted to antioxidant activity evaluation by two methods (ferrous ion-chelating capacity [FIC] and ß-carotene). The animals (n = 6/group) were treated orally (20 µL) with EOFSt (0.1, 0.5, or 1.0 mg/mL) or vehicle (0.9% sodium chloride [NaCl]; 20 µL), and submitted to nociception (formalin, cinnamaldehyde, capsaicin, glutamate, acidic saline, and hypertonic saline). Possible neuromodulation mechanisms, as well motor alterations and toxicity were also evaluated. In the FIC assay, EOFSt showed ferrous ion-chelating capacity in ∼40% to 90%. Regarding the ß-carotene bleaching assay, EOFSt showed inhibition in a 58% to 80% range. Oral administration of EOFSt showed no acute toxicity and did not alter the locomotor system of aZF, and reduced the nociceptive behavior in all tested models. These effects of EOFSt were significantly similar to those of morphine, used as a positive control. The antinociceptive effect of EOFSt was inhibited by naloxone, L-NAME, ketamine, camphor, ruthenium red, and amiloride. The antinociceptive effect of the EOFSt cornea was inhibited by capsazepine. EOFSt has the pharmacological potential for acute pain treatment and this effect is modulated by the opioid system, NMDA receptors, and transient receptor potential ankyrin 1 (TRPA1), transient receptor potential vanilloid 1 (TRPV1), and acid-sensing ion channels. The EOFSt also has the pharmacological potential for corneal pain treatment and this effect is modulated by the TRPV1 channel.


Assuntos
Anacardiaceae/química , Analgésicos/farmacologia , Óleos Voláteis/farmacologia , Peixe-Zebra/fisiologia , Administração Oral , Analgésicos/química , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/metabolismo , Feminino , Masculino , Óleos Voláteis/química , Folhas de Planta/química
3.
Biomed Pharmacother ; 108: 408-416, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30236850

RESUMO

Neem fruit (Azadirachta indica A. Juss.) are popularly used to treat infections, diarrhea, fever, bronchitis, skin diseases, infected burns and hypertension. Although the antinociceptive and anti-inflammatory potential of A. indica has already been investigated in experimental models of pain and inflammation in mice, the current research is the first to report the evaluation of the capacity of A. indica fruit ethanolic extract (EtFrNeem) in acute pain attenuation using the adult zebrafish (Danio rerio) as an alternative model to the use in rodents. EtFrNeem was submitted to antioxidant action, preliminary chemical prospecting, FT-IR and determination of phenol and flavonoid content tests. Subsequently, EtFrNeem was tested for acute nociception and abdominal inflammation, locomotor activity, and acute toxicity in adult zebrafish. Possible neuromodulation mechanisms were also evaluated. EtFrNeem showed low antioxidant activity, but was shown to be rich in flavonoids. EtFrNeem showed no anti-inflammatory action, did not alter the locomotor system, and it was not toxic. However, EtFrNeem significantly reduced the nociceptive behavior induced by formalin, glutamate and acidic saline, when compared to the control group. These effects of EtFrNeem were significantly similar to those of morphine, used as a positive control. The antinociceptive effect of EtFrNeem was inhibited by naloxone, ketamine and amiloride. EtFrNeem has the pharmacological potential for acute pain treatment and this effect is modulated by the opioid system, NMDA receptors and ASICs channels. These results lead us to studies of isolation and characterization of EtFrNeem bioactive principles, using adult zebrafish as an experimental model.


Assuntos
Analgésicos Opioides/farmacologia , Analgésicos/farmacologia , Azadirachta/química , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Frutas/química , Meliaceae/química , Extratos Vegetais/farmacologia , Canais Iônicos Sensíveis a Ácido/metabolismo , Animais , Antioxidantes/metabolismo , Modelos Animais de Doenças , Etanol , Flavonoides/farmacologia , Locomoção/efeitos dos fármacos , Morfina/farmacologia , Dor/tratamento farmacológico , Dor/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA