RESUMO
Combining genomic and geospatial data can be useful for understanding Mycobacterium tuberculosis transmission in high-burden tuberculosis (TB) settings. We performed whole-genome sequencing on M. tuberculosis DNA extracted from sputum cultures from a population-based TB study conducted in Gaborone, Botswana, during 2012-2016. We determined spatial distribution of cases on the basis of shared genotypes among isolates. We considered clusters of isolates with ≤5 single-nucleotide polymorphisms identified by whole-genome sequencing to indicate recent transmission and clusters of ≥10 persons to be outbreaks. We obtained both molecular and geospatial data for 946/1,449 (65%) participants with culture-confirmed TB; 62 persons belonged to 5 outbreaks of 10-19 persons each. We detected geospatial clustering in just 2 of those 5 outbreaks, suggesting heterogeneous spatial patterns. Our findings indicate that targeted interventions applied in smaller geographic areas of high-burden TB identified using integrated genomic and geospatial data might help interrupt TB transmission during outbreaks.
Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Botsuana/epidemiologia , Tuberculose/microbiologia , Mycobacterium tuberculosis/genética , Genótipo , GenômicaRESUMO
External validation in different cohorts is a key step in the translational development of new biomarkers. We previously described three host mRNA whose expression in peripheral blood is significantly higher (NPC2) or lower (DOCK9 and EPHA4) in individuals with TB compared to latent TB infection (LTBI) and controls. We have now conducted an independent validation of these genes by re-analyzing publicly available transcriptomic datasets from Brazil, China, Haiti, India, South Africa, and the United Kingdom. Comparisons between TB and control/LTBI showed significant differential expression of all three genes (NPC2high p < 0.01, DOCK9low p < 0.01, and EPHA4low p < 0.05). NPC2high had the highest mean area under the ROC curve (AUROC) for the differentiation of TB vs. controls (0.95) and LTBI (0.94). In addition, NPC2 accurately distinguished TB from the clinically similar conditions pneumonia (AUROC, 0.88), non-active sarcoidosis (0.87), and lung cancer (0.86), but not from active sarcoidosis (0.66). Interestingly, individuals progressing from LTBI to TB showed a constant increase in NPC2 expression with time when compared to non-progressors (p < 0.05), with a significant change closer to manifestation of active disease (≤3 months, p = 0.003). Moreover, NPC2 expression normalized with completion of anti-TB treatment. Taken together, these results validate NPC2 mRNA as a diagnostic host biomarker for active TB independent of host genetic background. Moreover, they reveal its potential to predict progression from latent to active infection and to indicate a response to anti-TB treatment.
Assuntos
Progressão da Doença , Transcriptoma/genética , Tuberculose/diagnóstico , Tuberculose/genética , Proteínas de Transporte Vesicular/genética , Biomarcadores/metabolismo , Estudos de Coortes , Diagnóstico Diferencial , Regulação da Expressão Gênica , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Curva ROC , Transcrição Gênica , Resultado do Tratamento , Tuberculose/sangue , Tuberculose/patologia , Proteínas de Transporte Vesicular/metabolismoRESUMO
Lately, much effort has been made to find mRNA biomarkers for tuberculosis (TB) disease/infection with microarray-based approaches. In a pilot investigation, through RNA sequencing technology, we observed a prominent modulation of DOCK9, EPHA4, and NPC2 mRNA abundance in the blood of TB patients. To corroborate these findings, independent validations were performed in cohorts from different areas. Gene expression levels in blood were evaluated by quantitative real-time PCR (Brazil, n = 129) or reanalysis of public microarray data (UK: n = 96; South Africa: n = 51; Germany: n = 26; and UK/France: n = 63). In the Brazilian cohort, significant modulation of all target-genes was observed comparing TB vs. healthy recent close TB contacts (rCt). With a 92% specificity, NPC2 mRNA high expression (NPC2high) showed the highest sensitivity (85%, 95% CI 65%-96%; area under the ROC curve [AUROC] = 0.88), followed by EPHA4 (53%, 95% CI 33%-73%, AUROC = 0.73) and DOCK9 (19%, 95% CI 7%-40%; AUROC = 0.66). All the other reanalyzed cohorts corroborated the potential of NPC2high as a biomarker for TB (sensitivity: 82-100%; specificity: 94-97%). An NPC2high profile was also observed in 60% (29/48) of the tuberculin skin test positive rCt, and additional follow-up evaluation revealed changes in the expression levels of NPC2 during the different stages of Mycobacterium tuberculosis infection, suggesting that further studies are needed to evaluate modulation of this gene during latent TB and/or progression to active disease. Considering its high specificity, our data indicate, for the first time, that NPC2high might serve as an accurate single-gene biomarker for TB.