RESUMO
Proper functioning of the endocrine stress axis requires communication between the stress axis and other regulatory mechanisms. We here describe an intimate interplay between the stress axis and recombinant human leptin (rhLeptin) in a teleostean fish, the common carp Cyprinus carpio. Restraint stress (by netting up to 96h) increased plasma cortisol but did not affect hepatic leptin expression. Perifusion of pituitary glands or head kidneys with rhLeptin revealed direct effects of rhLeptin on both tissues. RhLeptin suppresses basal and CRF-induced ACTH-secretion in a rapid and concentration-dependent manner. The rhLeptin effect persisted for over an hour after administration had been terminated. RhLeptin decreases basal interrenal cortisol secretion in vitro, and by doing so attenuates ACTH-stimulated cortisol production; rhLeptin does not affect interrenal ACTH-sensitivity. Our findings show that the endocrine stress axis activity and leptin are inseparably linked in a teleostean fish, a notion relevant to further our insights in the evolution of leptin physiology in vertebrates.
Assuntos
Carpas/metabolismo , Leptina/farmacologia , Proteínas Recombinantes/farmacologia , Animais , Receptor de Asialoglicoproteína/metabolismo , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Hipófise/efeitos dos fármacos , Hipófise/metabolismo , Estresse FisiológicoRESUMO
The inclusion of vegetable oils in aquafeeds introduces contaminating polycyclic aromatic hydrocarbons (PAHs) in salmonids. Since lipophilic PAHs solubilize in micelles composed of lipids, bile salts and fatty acids, dietary lipid composition can alter intestinal transepithelial PAH transfer. We studied the uptake of two PAHs, viz. benzo[a]pyrene (BaP) and phenanthrene (PHE), in rainbow trout (Oncorhynchus mykiss) intestine. We also investigated the effects of two fatty acids, viz. fish oil-derived eicosapentaenoic acid (EPA, 20:5n-3) and vegetable oil-derived oleic acid (18:1n-9) on intestinal uptake. Radiolabeled PAHs were solubilized in micelles composed of tritiated EPA and oleic acid, respectively, and administrated to intestinal segments mounted in Ussing chambers. In the absence of micelles, PHE accumulation was two times higher than BaP in the mucosal and serosal layers of proximal and distal intestine. Administration of PHE in micelles composed of oleic acid resulted in a 50% lower accumulation of PHE in the mucosal layers of the proximal intestine compared to EPA-composed micelles. Accumulation of EPA and oleic acid in the proximal intestinal mucosa correlated negatively with the transepithelial transfer of these fatty acids across the proximal intestinal epithelium. Transepithelial PHE transfer across the proximal intestine was reduced by 30% in co-exposure with EPA-composed micelles compared to 80% with oleic acid micelles. BaP was not transferred across the intestine. We conclude that the lipid composition of an aquafeed is an important determinant of PAH bioavailability. Therefore, lipid composition should be an important consideration in choosing vegetable oils as alternatives for fish oil in aquafeeds.
Assuntos
Benzo(a)pireno/farmacocinética , Ácidos Graxos/metabolismo , Ácidos Graxos/farmacocinética , Intestinos/efeitos dos fármacos , Oncorhynchus mykiss , Fenantrenos/farmacocinética , Animais , Transporte Biológico/efeitos dos fármacos , Interações Medicamentosas , Intestinos/fisiologiaRESUMO
Elevated levels of polycyclic aromatic hydrocarbons (PAHs) are detected in aquafeeds where fish oils are (partially) replaced by vegetable oils. The highly lipophilic PAHs solubilize readily in oil droplets and micelles in the intestinal lumen that can affect enzymatic lipid digestion by altering lipase activity. We therefore investigated the effect of two PAHs, benzo[a]pyrene (BaP) and phenanthrene (PHE), on bile salt-activated lipase (BAL) activity in desalted luminal extracts of the proximal intestine of rainbow trout (Oncorhynchus mykiss) using the triacylglycerides rapeseed oil and fish oil as substrates. The hydrolysis of rapeseed oil and fish oil measured at a calculated substrate concentration of 2.2mM, increased linearly up to 30min at 15°C. Substrate dependency under initial velocity conditions was described by simple Michaelis-Menten kinetics with a Km value of 1.2mM for rapeseed and fish oil. Rapeseed oil hydrolysis was inhibited by 1nM BaP and 10nM PHE. The hydrolysis of fish oil was only inhibited by 10µM BaP. The in vitro lipase activity data were corroborated by TLC/HPLC analysis of the reaction products, showing that in the presence of BaP and PHE, 46-80% less free fatty acids (FFA) were hydrolysed from rapeseed and fish oil triacylglycerides. The presence of low concentrations of BaP and PHE decreased rapeseed oil hydrolysis by BAL whereas fish oil hydrolysis was not affected. The replacement of fish oil by rapeseed oil in aquafeeds introduces PAHs that could affect lipid digestion.
Assuntos
Benzo(a)pireno/toxicidade , Intestinos/enzimologia , Lipase/antagonistas & inibidores , Oncorhynchus mykiss , Fenantrenos/toxicidade , Animais , Ecotoxicologia/métodos , Óleos de Peixe/farmacologia , Hidrólise , Óleos de Plantas/farmacologia , Óleo de Brassica napusRESUMO
Partial replacement of fish ingredients with vegetable ingredients has elevated levels of polycyclic aromatic hydrocarbons (PAHs) in Atlantic salmon reared on these feeds. PAH uptake in the intestinal tract is postulated to occur in association with lipid absorption and could well be affected by fatty acid composition. We therefore investigated the effects of a fish oil and vegetable oil fatty acid, eicosapentaenoic acid (EPA; 20:5n-3) and oleic acid (18:1n-9) respectively, on the uptake of benzo[a]pyrene (BaP) and phenanthrene (PHE) across the intestinal brush border membrane in the salmonid species rainbow trout (Oncorhynchus mykiss). BaP and PHE were solubilized in mixed micelles composed of either EPA or oleic acid and administrated to isolated brush border membrane vesicles (BBMV) derived from the pyloric caeca, proximal intestine and distal intestine. In the absence of free fatty acids (FFA) trans-membrane uptake of BaP and PHE was 2-7 times lower than the fraction associated to or in the membrane. In the presence of FFA, trans-membrane BaP uptake had decreased by 80 and 40% at the highest EPA and oleic acid concentration, respectively, whereas PHE uptake was virtually unaffected. In the presence of BaP, but not PHE, trans-membrane EPA uptake in BBMV had decreased. This study obtained evidence for PAH-dependent interactions with FFA uptake. We conclude that intestinal BaP uptake is reduced by luminal FFA contents whereas PHE uptake is not. A large fraction of the administrated BaP and PHE remains associated with the cellular membrane of enterocytes and may interfere with uptake of nutrients.
Assuntos
Benzo(a)pireno/farmacocinética , Membrana Celular/metabolismo , Ácidos Graxos/farmacologia , Mucosa Intestinal/metabolismo , Microvilosidades/metabolismo , Oncorhynchus mykiss/metabolismo , Animais , Benzo(a)pireno/metabolismo , Transporte Biológico/efeitos dos fármacos , Ceco/metabolismo , Ácido Eicosapentaenoico/farmacologia , Micelas , Ácido Oleico/farmacologia , Fenantrenos/metabolismo , Fenantrenos/farmacocinética , Piloro/metabolismo , Vesículas Transportadoras/metabolismoRESUMO
Uptake of polycyclic aromatic hydrocarbons (PAHs) across the intestine is suggested to occur in association with dietary lipids. Partial replacement of fish ingredients by vegetable ingredients in aquafeeds has led to increased levels of PAHs in marine farmed fish. We therefore investigated, intestinal uptake, tissue distribution and PAH metabolism after a single dose of (14)C-benzo[a]pyrene (BaP) or (14)C-phenanthrene (PHE) given to Atlantic salmon (Salmo salar) acclimatized to a fish oil or vegetable oil based diet. Both BaP and PHE were absorbed along the intestine. Fish oil based feed increased BaP concentration in the pyloric caeca and that of PHE in the proximal intestine. In contrast, vegetable oil increased BaP concentrations in the distal intestine. Extraction of whole body autoradiograms removed PHE-associated radiolabeling almost completely from the intestinal mucosa, but not BaP-associated radiolabeling, indicating the presence of BaP metabolites bound to cellular macromolecules. This observation correlates with the increased cyp1a expression in the proximal intestine, distal intestine and liver in the BaP exposed group. Furthermore, BaP-induced cyp1a expression was higher in the distal intestine of salmon fed fish oil compared to the vegetable oil fed group. PHE had no significant effect on cyp1a expression in any of these tissues. We conclude that dietary lipid composition affects intestinal PAH uptake. Fish oil based feed increased intestinal PAH concentrations probably due to an enhanced solubility in micelles composed of fish oil fatty acids. Increased BaP accumulation in the distal intestine of vegetable oil fed fish seems to be associated with a reduced Cyp1a-mediated BaP metabolism.
Assuntos
Ração Animal , Benzo(a)pireno/metabolismo , Gorduras na Dieta/administração & dosagem , Óleos de Peixe/administração & dosagem , Absorção Intestinal , Mucosa Intestinal/metabolismo , Fenantrenos/metabolismo , Óleos de Plantas/administração & dosagem , Salmo salar/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Animais , Benzo(a)pireno/toxicidade , Citocromo P-450 CYP1A1/biossíntese , Citocromo P-450 CYP1A1/genética , Indutores das Enzimas do Citocromo P-450/metabolismo , Indutores das Enzimas do Citocromo P-450/toxicidade , Gorduras na Dieta/metabolismo , Indução Enzimática , Óleos de Peixe/metabolismo , Absorção Gástrica , Absorção Intestinal/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Fígado/metabolismo , Fenantrenos/toxicidade , Óleos de Plantas/metabolismo , Solubilidade , Fatores de Tempo , Distribuição TecidualRESUMO
Growth regulation in adult Atlantic salmon (1.6 kg) was investigated during 45 days in seawater at 13, 15, 17, and 19 °C. We focused on feed intake, nutrient uptake, nutrient utilization, and endocrine regulation through growth hormone (GH), insulin-like growth factors (IGF), and IGF-binding proteins (IGFBP). During prolonged thermal exposure, salmon reduced feed intake and growth. Feed utilization was reduced at 19 °C after 45 days compared with fish at lower temperatures, and body lipid storage was depleted with increasing water temperature. Although plasma IGF-1 concentrations did not change, 32-Da and 43-kDa IGFBP increased in fish reared at ≤17 °C, and dropped in fish reared at 19 °C. Muscle igf1 mRNA levels were reduced at 15 and 45 days in fish reared at 15, 17, and 19 °C. Muscle igf2 mRNA levels did not change after 15 days in response to increasing temperature, but were reduced after 45 days. Although liver igf2 mRNA levels were reduced with increasing temperatures after 15 and 45 days, temperature had no effect on igf1 mRNA levels. The liver igfbp2b mRNA level, which corresponds to circulating 43-kDa IGFBP, exhibited similar responses after 45 days. IGFBP of 23 kDa was only detected in plasma in fish reared at 17 °C, and up-regulation of the corresponding igfbp1b gene indicated a time-dependent catabolic response, which was not observed in fish reared at 19 °C. However, higher muscle ghr mRNA levels were detected in fish at 17 and 19 °C than in fish at lower temperatures, indicating lipolytic regulation in muscle. These results show that the reduction of muscle growth in large salmon is mediated by decreased igf1 and igf2 mRNA levels in addition to GH-associated lipolytic action to cope with prolonged thermal exposure. Accordingly, 13 °C appears to be a more optimal temperature for the growth of adult Atlantic salmon at sea.