Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Immunogenetics ; 74(3): 313-326, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35291021

RESUMO

The role of natural killer (NK) cells is tightly modulated by interactions of killer cell immunoglobulin-like receptors (KIR) with their ligands of the MHC class I family. Several characteristics of the KIR gene products are conserved in primate evolution, like the receptor structures and the variegated expression pattern. At the genomic level, however, the clusters encoding the KIR family display species-specific diversity, reflected by differential gene expansions and haplotype architecture. The human KIR cluster is extensively studied in large cohorts from various populations, which revealed two KIR haplotype groups, A and B, that represent more inhibitory and more activating functional profiles, respectively. So far, genomic KIR analyses in large outbred populations of non-human primate species are lacking. In this study, we roughly quadrupled the number of rhesus macaques studied for their KIR transcriptome (n = 298). Using segregation analysis, we defined 112 unique KIR region configurations, half of which display a more inhibitory profile, whereas the other half has a more activating potential. The frequencies and functional potential of these profiles might mirror the human KIR haplotype groups. However, whereas the human group A and B KIR haplotypes are confined to largely fixed organizations, the haplotypes in macaques feature highly variable gene content. Moreover, KIR homozygosity was hardly encountered in this panel of macaques. This study exhibits highly diverse haplotype architectures in humans and macaques, which nevertheless might have an equivalent effect on the modulation of NK cell activity.


Assuntos
Hominidae , Receptores KIR , Animais , Haplótipos/genética , Humanos , Células Matadoras Naturais/metabolismo , Macaca mulatta/genética , Receptores KIR/genética , Receptores KIR/metabolismo
2.
Immunogenetics ; 74(4): 409-429, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35084546

RESUMO

The major histocompatibility complex (MHC) plays a key role in immune defense, and the Mhc genes of cynomolgus macaque display a high degree of polymorphism. Based on their geographic distribution, different populations of cynomolgus macaques are recognized. Here we present the characterization of the Mhc class I and II repertoire of a large pedigreed group of cynomolgus macaques originating from the mainland north of the isthmus of Kra (N = 42). Segregation analyses resulted in the definition of 81 unreported Mafa-A/B/DRB/DQ/DP haplotypes, which include 32 previously unknown DRB regions. In addition, we report 13 newly defined Mafa-A/B/DRB/DQ/DP haplotypes in a group of cynomolgus macaques originating from the mainland south of the isthmus of Kra/Maritime Southeast Asia (N = 16). A relatively high level of sharing of Mafa-A (51%) and Mafa-B (40%) lineage groups is observed between the populations native to the north and the south of isthmus of Kra. At the allelic level, however, the Mafa-A/B haplotypes seem to be characteristic of a population. An overall comparison of all currently known data revealed that each geographic population has its own specific combinations of Mhc class I and II haplotypes. This illustrates the dynamic evolution of the cynomolgus macaque Mhc region, which was most likely generated by recombination and maintained by selection due to the differential pathogenic pressures encountered in different geographic areas.


Assuntos
Genes MHC Classe I , Complexo Principal de Histocompatibilidade , Alelos , Animais , Genes MHC Classe I/genética , Haplótipos/genética , Macaca fascicularis/genética , Complexo Principal de Histocompatibilidade/genética
3.
J Immunol ; 204(7): 1770-1786, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32111732

RESUMO

The killer cell Ig-like receptors (KIR) modulate immune responses through interactions with MHC class I molecules. The KIR region in large cohorts of rhesus and cynomolgus macaque populations were characterized, and the experimental design enabled the definition of a considerable number of alleles (n = 576) and haplotypes, which are highly variable with regard to architecture. Although high levels of polymorphism were recorded, only a few alleles are shared between species and populations. The rapid evolution of allelic polymorphism, accumulated by point mutations, was further confirmed by the emergence of a novel KIR allele in a rhesus macaque family. In addition to allelic variation, abundant orthologous and species-specific KIR genes were identified, the latter of which are frequently generated by fusion events. The concerted action of both genetic mechanisms, in combination with differential selective pressures at the population level, resulted in the unparalleled rapid evolution of the KIR gene region in two closely related macaque species. The variation of the KIR gene repertoire at the species and population level might have an impact on the outcome of preclinical studies with macaque models.


Assuntos
Macaca fascicularis/genética , Macaca mulatta/genética , Receptores KIR/genética , Alelos , Animais , Evolução Molecular , Haplótipos/genética , Antígenos de Histocompatibilidade Classe I/genética , Polimorfismo Genético/genética
4.
Immunogenetics ; 71(8-9): 545-559, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31384962

RESUMO

Butyrophilins (BTN), specifically BTN3A, play a central role in the modulation of γδ T cells, which are mainly present in gut and mucosal tissues. BTN3A1 is known, for example, to activate Vγ9Vδ2 T cells by means of a phosphoantigen interaction. In the extended HLA region, three genes are located, designated BTN3A1, BTN3A2 and BTN3A3, which were also defined in rhesus macaques. In contrast to humans, rhesus monkeys have an additional gene, BTN3A3Like, which has the features of a pseudogene. cDNA analysis of 32 Indian rhesus and 16 cynomolgus macaques originating from multiple-generation families revealed that all three genes are oligomorphic, and the deduced amino acids display limited variation. The macaque BTN3A alleles segregated together with MHC alleles, proving their location in the extended (Major Histocompatibility Complex) MHC. BTN3A nearly full-length transcripts of macaques and humans cluster tightly together in the phylogenetic tree, suggesting that the genes represent true orthologs of each other. Despite the limited level of polymorphism, 15 Mamu- and 14 Mafa-BTN3A haplotypes were defined, and, as in humans, all three BTN3A genes are transcribed in PBMCs and colon tissues. In addition to regular full-length transcripts, a high number of various alternative splicing (AS) products were observed for all BTN3A alleles, which may result in different isoforms. The comparable function of certain subsets of γδ T cells in human and non-human primates in concert with high levels of sequence conservation observed for the BTN3A transcripts presents the opportunity to study these not yet well understood molecules in macaques as a model species.


Assuntos
Antígenos CD/genética , Butirofilinas/genética , Antígenos de Histocompatibilidade/genética , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Sequência de Aminoácidos , Animais , Butirofilinas/metabolismo , Sequência Conservada , Feminino , Haplótipos , Humanos , Macaca mulatta , Masculino , Filogenia , Receptores de Antígenos de Linfócitos T gama-delta/genética , Homologia de Sequência , Linfócitos T/metabolismo
5.
Immunogenetics ; 71(2): 97-107, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30324236

RESUMO

The major histocompatibility complex (MHC) is a highly polymorphic and polygenic genomic region that plays a crucial role in immune-related diseases. Given the need for comparative studies on the variability of immunologically important genes among wild populations and species, we investigated the allelic variation of MHC class II DRB among three congeneric true lemur species: the red-fronted lemur (Eulemur rufifrons), red-bellied lemur (Eulemur rubriventer), and black lemur (Eulemur macaco). We noninvasively collected hair and faecal samples from these species across different regions in Madagascar. We assessed DRB exon 2 polymorphism with a newly developed primer set, amplifying nearly all non-synonymous codons of the antigen-binding sites. We defined 26 DRB alleles from 45 individuals (17 alleles from E. rufifrons (N = 18); 5 from E. rubriventer (N = 7); and 4 from E. macaco (N = 20). All detected alleles are novel and show high levels of nucleotide (26.8%) and non-synonymous codon polymorphism (39.4%). In these lemur species, we found neither evidence of a duplication of DRB genes nor a sharing of alleles among sympatric groups or allopatric populations of the same species. The non-sharing of alleles may be the result of a geographical separation over a long time span and/or different pathogen selection pressures. We found dN/dS rates > 1 in the functionally important antigen recognition sites, providing evidence for balancing selection. Especially for small and isolated populations, quantifying and monitoring DRB variation are recommended to establish successful conservation plans that mitigate the possible loss of immunogenetic diversity in lemurs.


Assuntos
Cadeias beta de HLA-DR/genética , Lemur/imunologia , Alelos , Animais , Éxons , Feminino , Masculino , Filogenia
6.
Immunogenetics ; 69(2): 87-99, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27771735

RESUMO

The human major histocompatibility complex (MHC) region encodes three types of class II molecules designated HLA-DR, -DQ, and -DP. Both the HLA-DQ and -DP gene region comprise a duplicated tandem of A and B genes, whereas in macaques, only one set of genes is present per region. A substantial sequencing project on the DQ and DP genes in various macaque populations resulted in the detection of previously 304 unreported full-length alleles. Phylogenetic studies showed that humans and macaques share trans-species lineages for the DQA1 and DQB1 genes, whereas the DPA1 and DPB1 lineages in macaques appear to be species-specific. Amino acid variability plot analyses revealed that each of the four genes displays more allelic variation in macaques than is encountered in humans. Moreover, the numbers of different amino acids at certain positions in the encoded proteins are higher than in humans. This phenomenon is remarkably prominent at the contact positions of the peptide-binding sites of the deduced macaque DPß-chains. These differences in the MHC class II DP regions of macaques and humans suggest separate evolutionary mechanisms in the generation of diversity.


Assuntos
Evolução Biológica , Variação Genética/genética , Antígenos HLA-DP/genética , Antígenos HLA-DQ/genética , Macaca mulatta/classificação , Macaca mulatta/genética , Alelos , Animais , Frequência do Gene , Haplótipos , Humanos , Filogenia
7.
Immunogenetics ; 66(9-10): 535-44, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24934118

RESUMO

A panel of 15 carefully selected microsatellites (short tandem repeats, STRs) has allowed us to study segregation and haplotype stability in various macaque species. The STRs span the major histocompatibility complex (MHC) region and map in more detail from the centromeric part of the Mhc-A to the DR region. Two large panels of Indian rhesus and Indonesian/Indochinese cynomolgus macaques have been subjected to pedigree analysis, allowing the definition of 161 and 36 different haplotypes and the physical mapping of 10 and 5 recombination sites, respectively. Although most recombination sites within the studied section of the Indian rhesus monkey MHC are situated between the Mhc-A and Mhc-B regions, the resulting recombination rate for this genomic segment is low and similar to that in humans. In contrast, in Indonesian/Indochinese macaques, two recombination sites, which appear to be absent in rhesus macaques, map between the class III and II regions. As a result, the mean recombination frequency of the core MHC, Mhc-A to class II, is higher in Indonesian/Indochinese cynomolgus than in Indian rhesus macaques, but as such is comparable to that in humans. The present communication demonstrates that the dynamics of recombination 'hot/cold spots' in the MHC, as well as their frequencies, may differ substantially between highly related macaque species.


Assuntos
Genes MHC da Classe II/genética , Genes MHC Classe I/genética , Haplótipos/genética , Macaca fascicularis/genética , Macaca mulatta/genética , Repetições de Microssatélites/genética , Recombinação Genética/genética , Animais , DNA/genética , Frequência do Gene , Reação em Cadeia da Polimerase
8.
Mol Biol Evol ; 29(12): 3843-53, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22826457

RESUMO

The HLA region shows diversity concerning the number and content of DRB genes present per haplotype. Similar observations are made for the equivalent regions in other primate species. To elucidate the evolutionary history of the various HLA-DRB genes, a large panel of intron sequences obtained from humans, chimpanzees, rhesus macaques, and common marmosets has been subjected to phylogenetic analyses. Special attention was paid to the presence and absence of particular transposable elements and/or to their segments. The sharing of different parts of the same long interspersed nuclear element-2 (LINE2, L2) and various Alu insertions by the species studied demonstrates that one precursor gene must have been duplicated several times before the Old World monkey (OWM) and hominid (HOM) divergence. At least four ancestral DRB gene families appear to have been present before the radiation of OWM and HOM, and one of these even predates the speciation of Old and New World primates. Two of these families represent the pseudogenes DRB6/DRB2 and DRB7, which have been locked in the genomes of various primate species over long evolutionary time spans. Furthermore, all phylogenies of different intron segments show consistently that, apart from the pseudogenes, only DRB5 genes are shared by OWM and HOM, and they demonstrate the common history of certain DRB genes/lineages of humans and chimpanzees. In contrast, the evolutionary history of some other DRB loci is difficult to decipher, thus illustrating the complex history of the evolution of DRB genes due to a combination of mutations and recombination-like events. The selected approach allowed us to shed light on the ancestral DRB gene pool in primates and on the evolutionary relationship of the various HLA-DRB genes.


Assuntos
Callithrix/genética , Evolução Molecular , Cadeias beta de HLA-DR/genética , Macaca mulatta/genética , Pan troglodytes/genética , Filogenia , Animais , Sequência de Bases , Análise por Conglomerados , Primers do DNA/genética , Humanos , Íntrons/genética , Funções Verossimilhança , Elementos Nucleotídeos Longos e Dispersos/genética , Modelos Genéticos , Dados de Sequência Molecular , Pseudogenes/genética , Análise de Sequência de DNA , Especificidade da Espécie
9.
Immunogenetics ; 65(8): 569-84, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23715823

RESUMO

The Mamu-A, Mamu-B, and Mamu-DRB genes of the rhesus macaque show several levels of complexity such as allelic heterogeneity (polymorphism), copy number variation, differential segregation of genes/alleles present on a haplotype (diversity) and transcription level differences. A combination of techniques was implemented to screen a large panel of pedigreed Indian rhesus macaques (1,384 individuals representing the offspring of 137 founding animals) for haplotype diversity in an efficient and inexpensive manner. This approach allowed the definition of 140 haplotypes that display a relatively low degree of region variation as reflected by the presence of only 17 A, 18 B and 22 DRB types, respectively, exhibiting a global linkage disequilibrium comparable to that in humans. This finding contrasts with the situation observed in rhesus macaques from other geographic origins and in cynomolgus monkeys from Indonesia. In these latter populations, nearly every haplotype appears to be characterised by a unique A, B and DRB region. In the Indian population, however, a reshuffling of existing segments generated "new" haplotypes. Since the recombination frequency within the core MHC of the Indian rhesus macaques is relatively low, the various haplotypes were most probably produced by recombination events that accumulated over a long evolutionary time span. This idea is in accord with the notion that Indian rhesus macaques experienced a severe reduction in population during the Pleistocene due to a bottleneck caused by geographic changes. Thus, recombination-like processes appear to be a way to expand a diminished genetic repertoire in an isolated and relatively small founder population.


Assuntos
Variação Genética , Haplótipos , Macaca mulatta/genética , Complexo Principal de Histocompatibilidade/genética , Recombinação Genética , Animais , Linhagem Celular , Cromossomos de Mamíferos/genética , Evolução Molecular , Éxons , Feminino , Técnicas de Genotipagem , Índia , Desequilíbrio de Ligação , Masculino , Repetições de Microssatélites , Mianmar , Linhagem
10.
Immunogenetics ; 64(1): 31-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21805219

RESUMO

The DR region of particular primate species may display allelic polymorphism and gene copy number variation (region configuration polymorphism). The sum of these distinct types of polymorphism is defined as complexity. To date, however, the DR region of cynomolgus macaques (Macaca fascicularis) has been poorly defined. Transcriptome analysis of a pedigreed colony, comprising animals from Indonesia and Indochina, revealed a total of 15 Mafa-DRA and 57 DRB alleles, specifying 28 different region configurations. The DRA alleles can be divided into two distinct lineages. One lineage is polymorphic, but the majority of the amino acid replacements map to the leader peptide. The second lineage is at best oligomorphic, and segregates with one specific Mafa-DRB allele. The number of Mafa-DRB genes ranges from two to five per haplotype. Due to the presence of pseudogenes, however, each haplotype encodes only one to three bona fide DRB transcripts. Depending on the region configuration in which the Mafa-DRB gene is embedded, identical alleles may display differential transcription levels. Region configurations appear to have been generated by recombination-like events. When genes or gene segments are relocated, it seems plausible that they may be placed in the context of distinct transcription control elements. As such, DRB region-related transcription level differences may add an extra layer of polymorphism to this section of the adaptive immune system.


Assuntos
Antígenos HLA-DR/genética , Macaca fascicularis/genética , Transcriptoma , Animais , Linhagem Celular , Feminino , Haplótipos , Masculino , Linhagem , Polimorfismo Genético
11.
Immunogenetics ; 64(10): 755-65, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22772814

RESUMO

Cynomolgus macaques (Macaca fascicularis) are used widely in biomedical research, and the genetics of their MHC (Mhc-Mafa) has become the focus of considerable attention in recent years. The cohort of Indonesian pedigreed macaques that we present here was typed for Mafa-A, -B, and -DR, by sequencing, as described in earlier studies. Additionally, the DRB region of these animals was characterised by microsatellite analyses. In this study, full-length sequencing of Mafa-DPA/B and -DQA/B in these animals was performed. A total of 75 different alleles were observed; 22 of which have not previously been reported, plus 18 extended exon 2 alleles that were already known. Furthermore, two microsatellites, D6S2854 and D6S2859, were used to characterise the complex Mafa-A region. Sequencing and segregation analyses revealed that the length patterns of these microsatellites are unique for each Mafa-A haplotype. In this work, we present a pedigreed colony of approximately 120 cynomolgus macaques; all of which are typed for the most significant polymorphic MHC class I and class II markers. Offspring of these pedigreed animals are easily characterised for their MHC by microsatellite analyses on the Mafa-A and -DRB regions, which makes the cumbersome sequencing analyses redundant.


Assuntos
Genes MHC da Classe II/genética , Genes MHC Classe I/genética , Haplótipos/genética , Macaca fascicularis/genética , Alelos , Animais , Feminino , Masculino , Repetições de Microssatélites , Linhagem
12.
Immunogenetics ; 63(2): 73-83, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20949353

RESUMO

The Mamu-A genes of the rhesus macaque show different degrees of polymorphism, transcription level variation, and differential haplotype distribution. Per haplotype, usually one "major" transcribed gene is present, A1 (A7), in various combinations with "minor" genes, A2 to A6. In silico analysis of the physical map of a heterozygous animal revealed the presence of similar Mamu-A regions consisting of four duplication units, but with dissimilar positions of the A1 genes on both haplotypes, and in combination with different minor genes. Two microsatellites, D6S2854 and D6S2859, have been selected as potential tools to characterize this complex region. Subsequent analysis of a large breeding colony resulted in the description of highly discriminative patterns, displaying copy number variation in concert with microsatellite repeat length differences. Sequencing and segregation analyses revealed that these patterns are unique for each Mamu-A haplotype. In animals of Indian, Burmese, and Chinese origin, 19, 15, or 9 haplotypes, respectively, could be defined, illustrating the occurrence of differential block duplications and subsequent rearrangements by recombination. The haplotypes can be assigned to 12 unique combinations of genes (region configurations). Although most configurations harbor two transcribed A genes, one or three genes per haplotype are also present. Additionally, haplotypes lacking an A1 gene or with an A1 duplication appear to exist. The presence of different transcribed A genes/alleles in monkeys from various origins may have an impact on differential disease susceptibilities. The high-throughput microsatellite technique will be a valuable tool in animal selection for diverse biomedical research projects.


Assuntos
Genoma , Antígenos HLA-A/genética , Haplótipos , Macaca mulatta/genética , Repetições de Microssatélites , Animais , Genética Populacional
13.
Immunogenetics ; 62(3): 137-47, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20131048

RESUMO

The DR region of primate species is generally complex and displays diversity concerning the number and combination of distinct types of DRB genes present per region configuration. A highly variable short tandem repeat (STR) present in intron 2 of nearly all primate DRB genes can be utilized as a quick and accurate high through-put typing procedure. This approach resulted previously in the description of unique and haplotype-specific DRB-STR length patterns in humans, chimpanzees, and rhesus macaques. For the present study, a cohort of 230 cynomolgus monkeys, including self-sustaining breeding groups, has been examined. MtDNA analysis showed that most animals originated from the Indonesian islands, but some are derived from the mainland, south and north of the Isthmus of Kra. Haplotyping and subsequent sequencing resulted in the detection of 118 alleles, including 28 unreported ones. A total of 49 Mafa-DRB region configurations were detected, of which 28 have not yet been described. Humans and chimpanzees possess a low number of different DRB region configurations in concert with a high degree of allelic variation. In contrast, however, allelic heterogeneity within a given Mafa-DRB configuration is even less frequently observed than in rhesus macaques. Several of these region configurations appear to have been generated by recombination-like events, most probably propagated by a retroviral element mapping within DRB6 pseudogenes, which are present on the majority of haplotypes. This undocumented high level of DRB region configuration-associated diversity most likely represents a species-specific strategy to cope with various pathogens.


Assuntos
Variação Genética/genética , Antígenos HLA-DR/genética , Macaca fascicularis/genética , Recombinação Genética/genética , Alelos , Animais , DNA Mitocondrial/genética , Genótipo , Haplótipos , Repetições de Microssatélites/genética , Filogenia , Reação em Cadeia da Polimerase , Pseudogenes/genética
14.
J Virol ; 82(13): 6667-77, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18448532

RESUMO

The major histocompatibility complex (MHC) represents a multigene family that is known to display allelic and gene copy number variations. Primate species such as humans, chimpanzees (Pan troglodytes), and rhesus macaques (Macaca mulatta) show DRB region configuration polymorphism at the population level, meaning that the number and content of DRB loci may vary per haplotype. Introns of primate DRB alleles differ significantly in length due to insertions of transposable elements as long endogenous retrovirus (ERV) and human ERV (HERV) sequences in the DRB2, DRB6, and DRB7 pseudogenes. Although the integration of intronic HERVs resulted sooner or later in the inactivation of the targeted genes, the fixation of these endogenous retroviral segments over long time spans seems to have provided evolutionary advantage. Intronic HERVs may have integrated in a sense or an antisense manner. On the one hand, antisense-oriented retroelements such as HERV-K14I, observed in intron 2 of the DRB7 genes in humans and chimpanzees, seem to promote stability, as configurations/alleles containing these hits have experienced strong conservative selection during primate evolution. On the other hand, the HERVK3I present in intron 1 of all DRB2 and/or DRB6 alleles tested so far integrated in a sense orientation. The data suggest that multigenic regions in particular may benefit from sense introgressions by HERVs, as these elements seem to promote and maintain the generation of diversity, whereas these types of integrations may be lethal in monogenic systems, since they are known to influence transcript regulation negatively.


Assuntos
Retrovirus Endógenos/genética , Genes MHC da Classe II/genética , Variação Genética , Instabilidade Genômica/genética , Pan troglodytes/genética , Filogenia , Animais , Sequência de Bases , Clonagem Molecular , Análise por Conglomerados , Primers do DNA/genética , Humanos , Íntrons/genética , Dados de Sequência Molecular , Análise de Sequência de DNA
15.
Mol Immunol ; 45(10): 2743-51, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18395261

RESUMO

In most primate species, the class II region of the Major Histocompatibility Complex (MHC) displays diversity with regard to gene copy number and combination of DRB genes present per region configuration. Some of these loci exhibit extremely high levels of allelic variability, whereas others display only moderate levels of polymorphism. To understand the evolutionary history of the various HLA-DR region genes, a large number of full-length sequences of rhesus macaques, chimpanzees and humans were determined. The exon-intron organisation of the DRA gene, displaying only low levels of polymorphism, appears to have been highly conserved during primate evolution. The physical length of various DRB genes/alleles, however, fluctuates significantly in primates due to the presence of indels (insertions/deletions), mainly mapping to intron 1. Phylogenetic evidence supports the notion that the generation of new DRB genes is a dynamic and steadily ongoing process. Indeed, most of the primate DRB alleles investigated represent relatively young entities, possessing species-unique sequences. This seems to contradict the current view that the highly similar peptide binding motifs of many HLA-, Patr- and Mamu-DR molecules, encoded by exon 2 of the DRB gene, represent old entities, which predate primate speciation. As no evidence was found for convergent evolution, the combination of these two observations indicates that ancient peptide binding motifs are frequently reshuffled among duplicated members of the HLA-DRB multigene family.


Assuntos
Antígenos HLA-DR/genética , Antígenos HLA-DR/metabolismo , Família Multigênica/genética , Peptídeos/metabolismo , Motivos de Aminoácidos , Animais , Sequência de Bases , Evolução Molecular , Éxons/genética , Antígenos HLA-DR/química , Humanos , Macaca/genética , Dados de Sequência Molecular , Pan troglodytes/genética , Filogenia , Polimorfismo Genético , Ligação Proteica , Seleção Genética , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico
16.
Immunogenetics ; 60(12): 737-48, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18956179

RESUMO

The DRB region of the major histocompatibility complex (MHC) of cynomolgus and rhesus macaques is highly plastic, and extensive copy number variation together with allelic polymorphism makes it a challenging enterprise to design a typing protocol. All intact DRB genes in cynomolgus monkeys (Mafa) appear to possess a compound microsatellite, DRB-STR, in intron 2, which displays extensive length polymorphism. Therefore, this STR was studied in a large panel of animals, comprising pedigreed families as well. Sequencing analysis resulted in the detection of 60 Mafa-DRB exon 2 sequences that were unambiguously linked to the corresponding microsatellite. Its length is often allele specific and follows Mendelian segregation. In cynomolgus and rhesus macaques, the nucleotide composition of the DRB-STR is in concordance with the phylogeny of exon 2 sequences. As in humans and rhesus monkeys, this protocol detects specific combinations of different DRB-STR lengths that are unique for each haplotype. In the present panel, 22 Mafa-DRB region configurations could be defined, which exceeds the number detected in a comparable cohort of Indian rhesus macaques. The results suggest that, in cynomolgus monkeys, even more frequently than in rhesus macaques, new haplotypes are generated by recombination-like events. Although both macaque species are known to share several identical DRB exon 2 sequences, the lengths of the corresponding microsatellites often differ. Thus, this method allows not only fast and accurate DRB haplotyping but may also permit discrimination between highly related macaque species.


Assuntos
Genes MHC da Classe II , Macaca fascicularis/genética , Macaca mulatta/genética , Instabilidade de Microssatélites , Repetições de Microssatélites/genética , Animais , Sequência de Bases , DNA Mitocondrial/genética , DNA Ribossômico/genética , Éxons/genética , Masculino , Dados de Sequência Molecular , Filogenia , RNA Ribossômico/genética , Recombinação Genética , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie
17.
Mol Ecol ; 17(8): 2074-88, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18346126

RESUMO

Chimpanzees experienced a reduction of the allelic repertoire at the major histocompatibility complex (MHC) class I A and B loci, which may have been caused by a retrovirus belonging to the simian immunodeficiency virus (SIV) family. Extended MHC haplotypes were defined in a pedigreed chimpanzee colony. Comparison of genetic variation at microsatellite markers mapping inside and outside the Mhc region was carried out in humans and chimpanzees to investigate the genomic extent of the repertoire reduction. Multilocus demographic analyses underscored that chimpanzees indeed experienced a selective sweep that mainly targeted the chromosomal segment carrying the Mhc class I region. Probably due to genetic linkage, the sweep also affected other polymorphic loci, mapping in the close vicinity of the Mhc class I region genes. Nevertheless, although the allelic repertoire at particular Mhc class I and II loci appears to be limited, naturally occurring recombination events allowed the establishment of haplotype diversity after the sweep. However, recombination did not have sufficient time to erase the signal of the selective sweep.


Assuntos
Antígenos de Histocompatibilidade Classe I/genética , Pan troglodytes/genética , Pan troglodytes/imunologia , África Ocidental , Animais , DNA Mitocondrial/química , DNA Mitocondrial/genética , Variação Genética , Haplótipos/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Repetições de Microssatélites/genética , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
18.
Front Immunol ; 9: 2846, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30564240

RESUMO

The killer-cell Ig-like receptors (KIR) form a multigene entity involved in modulating immune responses through interactions with MHC class I molecules. The complexity of the KIR cluster is reflected by, for instance, abundant levels of allelic polymorphism, gene copy number variation, and stochastic expression profiles. The current transcriptome study involving human and macaque families demonstrates that KIR family members are also subjected to differential levels of alternative splicing, and this seems to be gene dependent. Alternative splicing may result in the partial or complete skipping of exons, or the partial inclusion of introns, as documented at the transcription level. This post-transcriptional process can generate multiple isoforms from a single KIR gene, which diversifies the characteristics of the encoded proteins. For example, alternative splicing could modify ligand interactions, cellular localization, signaling properties, and the number of extracellular domains of the receptor. In humans, we observed abundant splicing for KIR2DL4, and to a lesser extent in the lineage III KIR genes. All experimentally documented splice events are substantiated by in silico splicing strength predictions. To a similar extent, alternative splicing is observed in rhesus macaques, a species that shares a close evolutionary relationship with humans. Splicing profiles of Mamu-KIR1D and Mamu-KIR2DL04 displayed a great diversity, whereas Mamu-KIR3DL20 (lineage V) is consistently spliced to generate a homolog of human KIR2DL5 (lineage I). The latter case represents an example of convergent evolution. Although just a single KIR splice event is shared between humans and macaques, the splicing mechanisms are similar, and the predicted consequences are comparable. In conclusion, alternative splicing adds an additional layer of complexity to the KIR gene system in primates, and results in a wide structural and functional variety of KIR receptors and its isoforms, which may play a role in health and disease.


Assuntos
Processamento Alternativo/genética , Receptores KIR/genética , Animais , Variações do Número de Cópias de DNA/genética , Éxons/genética , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Macaca mulatta , Isoformas de Proteínas/genética
19.
Primate Biol ; 4(1): 117-125, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32110699

RESUMO

Endometriosis is a poorly understood common debilitating women's reproductive disorder resulting from proliferative and ectopic endometrial tissue associated with variable clinical symptoms including dysmenorrhea (painful menstrual periods), dyspareunia (pain on intercourse), female infertility, and an increased risk of malignant transformation. The rhesus macaque (Macaca mulatta) develops a spontaneous endometriosis that is very similar to that seen in women. We hypothesized that specific major histocompatibility complex (MHC) alleles may contribute to the pathogenesis of endometriosis. As part of a collaboration between the Biomedical Primate Research Centre (BPRC) in the Netherlands and the New England Primate Research Center (NEPRC) in the United States, we analyzed DNA sequences of MHC class I (Macaca mulatta, Mamu-A1) and class II (Mamu-DRB) alleles from rhesus macaques with endometriosis and compared the allele frequencies with those of age-matched healthy macaques. We demonstrate that two MHC class I alleles are overrepresented in diseased macaques compared to controls: Mamu-A1*001, 33.3 % in BPRC animals with endometriosis vs. 11.6 % in healthy macaques ( p =  0.007), and Mamu-A1*007, 21.9 % NEPRC rhesus macaques vs. 6.7 %, ( p =  0.003). We provide evidence that select MHC class I alleles are associated with endometriosis in rhesus macaques and suggest that the disease pathogenesis contribution of MHC class I warrants further research.

20.
Mol Immunol ; 47(2-3): 381-9, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19800692

RESUMO

In humans, great apes, and different monkey species, the major histocompatibility complex (MHC) class II DRB region is known to display considerable copy number variation. The microsatellite D6S2878 has been shown to be a valuable marker for haplotyping the DR region in humans and macaque species. The present report illustrates that chimpanzee haplotypes also can be discriminated with this marker. The analyses resulted in the description of nine different region configurations, of which seven are present within the West African chimpanzee population studied. The region configurations vary in gene content from two up to five DRB genes. Subsequent cDNA sequencing increased the number of known full-length Patr-DRB sequences from 3 to 32, and shows that one to three Patr-DRB genes per haplotype apparently produce functional transcripts. This is more or less comparable to humans and rhesus macaques. Moreover, microsatellite analysis in concert with full-length DRB gene sequencing showed that the Patr-DRB*W9 and -DRB3*01/02 lineages most likely arose from a common ancestral lineage: hence, the Patr-DRB*W9 lineage was renamed to Patr-DRB3*07. Overall, the data demonstrate that the D6S2878 microsatellite marker allows fast and accurate haplotyping of the Patr-DRB region. In addition, the limited amount of allelic variation observed at the various Patr-DRB genes is in agreement with the fact that chimpanzees experienced a selective sweep that may have been caused by an ancient retroviral infection.


Assuntos
Antígenos HLA-DR/genética , Antígenos HLA-DR/imunologia , Pan troglodytes/genética , Pan troglodytes/imunologia , Polimorfismo Genético , Pseudogenes/genética , Síndrome da Imunodeficiência Adquirida/genética , Síndrome da Imunodeficiência Adquirida/imunologia , Alelos , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA Complementar/genética , Antígenos HLA-DR/química , Haplótipos/genética , Humanos , Imunidade Inata/genética , Imunidade Inata/imunologia , Repetições de Microssatélites/genética , Dados de Sequência Molecular , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA