Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Folia Parasitol (Praha) ; 692022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36185031

RESUMO

Ligula intestinalis (Linnaeus, 1758) is a tapeworm parasite with a worldwide distribution that uses a wide variety of fish species as its second intermediate host. In the present study, we investigated the prevalence and population genetic structure of plerocercoids of L. intestinalis in five common cyprinoid species, roach Rutilus rutilus (Linnaeus), freshwater bream Abramis brama (Linnaeus), white bream Blicca bjoerkna (Linnaeus), bleak Alburnus alburnus (Linnaeus), and rudd Scardinius erythrophthalmus (Linnaeus), collected in six water bodies of the Czech Republic (Milada, Most, Medard, Jordán, Rímov and Lipno). Of the six study sites, the highest frequency of parasitism was recorded in Lake Medard (15%). The overall prevalence rate among the species was as follows: roach > rudd ≥ freshwater bream > bleak > white bream. Two mitochondrial genes (cytb and COI) were used to compare the population genetic structure of parasite populations using selected samples from the five fish species. The results of the phylogenetic analysis indicated that all populations of L. intestinalis were placed in Clade A, previously identified as the most common in Europe. At a finer scale, haplotype network and PCoA analyses indicated the possible emergence of host specificity of several mtDNA haplotypes to the freshwater bream. Moreover, pairwise Fixation indices (FST) revealed a significant genetic structure between the parasite population in freshwater bream and other host species. Parasite populations in roach not only showed the highest rate of prevalence but also depicted a maximum number of shared haplotypes with populations from bleak and rudd. Our results suggest that recent ecological differentiation might have influenced tapeworm populations at a fine evolutionary scale. Thus, the differences in prevalence between fish host species in different lakes might be influenced not only by the parasite's ecology, but also by its genetic diversity.


Assuntos
Cestoides , Infecções por Cestoides , Cyprinidae , Doenças dos Peixes , Parasitos , Animais , Cestoides/genética , Infecções por Cestoides/epidemiologia , Infecções por Cestoides/parasitologia , Infecções por Cestoides/veterinária , Cyprinidae/parasitologia , República Tcheca/epidemiologia , DNA Mitocondrial , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/parasitologia , Estruturas Genéticas , Genética Populacional , Interações Hospedeiro-Parasita , Lagos , Filogenia , Prevalência , Água
2.
Sci Rep ; 10(1): 5221, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32251308

RESUMO

Viruses are the most abundant biological entities in marine environments, however, despite its potential ecological implications, little is known about virus removal by ambient non-host organisms. Here, we examined the effects of a variety of non-host organisms on the removal of viruses. The marine algal virus PgV-07T (infective to Phaeocystis globosa) can be discriminated from bacteriophages using flow cytometry, facilitating its use as a representative model system. Of all the non-host organisms tested, anemones, polychaete larvae, sea squirts, crabs, cockles, oysters and sponges significantly reduced viral abundance. The latter four species reduced viral abundance the most, by 90, 43, 12 and 98% over 24 h, respectively. Breadcrumb sponges instantly removed viruses at high rates (176 mL h-1 g tissue dry wt-1) which continued over an extended period of time. The variety of non-host organisms capable of reducing viral abundance highlights that viral loss by ambient organisms is an overlooked avenue of viral ecology. Moreover, our finding that temperate sponges have the huge potential for constant and effective removal of viruses from the water column demonstrates that natural viral loss has, thus far, been underestimated.


Assuntos
Organismos Aquáticos/virologia , Phycodnaviridae/patogenicidade , Microbiologia da Água , Animais , Braquiúros/virologia , Copépodes/virologia , Especificidade de Hospedeiro , Mytilus edulis/virologia , Ostreidae/virologia , Phycodnaviridae/fisiologia , Poríferos/virologia , Anêmonas-do-Mar/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA