Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Neuroinflammation ; 14(1): 91, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28446241

RESUMO

BACKGROUND: The consumption of large amounts of dietary fats is one of the most important environmental factors contributing to the development of obesity and metabolic disorders. GPR120 and GPR40 are polyunsaturated fatty acid receptors that exert a number of systemic effects that are beneficial for metabolic and inflammatory diseases. Here, we evaluate the expression and potential role of hypothalamic GPR120 and GPR40 as targets for the treatment of obesity. METHODS: Male Swiss (6-weeks old), were fed with a high fat diet (HFD, 60% of kcal from fat) for 4 weeks. Next, mice underwent stereotaxic surgery to place an indwelling cannula into the right lateral ventricle. intracerebroventricular (icv)-cannulated mice were treated twice a day for 6 days with 2.0 µL saline or GPR40 and GPR120 agonists: GW9508, TUG1197, or TUG905 (2.0 µL, 1.0 mM). Food intake and body mass were measured during the treatment period. At the end of the experiment, the hypothalamus was collected for real-time PCR analysis. RESULTS: We show that both receptors are expressed in the hypothalamus; GPR120 is primarily present in microglia, whereas GPR40 is expressed in neurons. Upon intracerebroventricular treatment, GW9508, a non-specific agonist for both receptors, reduced energy efficiency and the expression of inflammatory genes in the hypothalamus. Reducing GPR120 hypothalamic expression using a lentivirus-based approach resulted in the loss of the anti-inflammatory effect of GW9508 and increased energy efficiency. Intracerebroventricular treatment with the GPR120- and GPR40-specific agonists TUG1197 and TUG905, respectively, resulted in milder effects than those produced by GW9508. CONCLUSIONS: GPR120 and GPR40 act in concert in the hypothalamus to reduce energy efficiency and regulate the inflammation associated with obesity. The combined activation of both receptors in the hypothalamus results in better metabolic outcomes than the isolated activation of either receptor alone.


Assuntos
Metabolismo Energético/fisiologia , Ácidos Graxos Insaturados/biossíntese , Homeostase/fisiologia , Hipotálamo/metabolismo , Receptores Acoplados a Proteínas G/biossíntese , Animais , Linhagem Celular , Ácidos Graxos Insaturados/genética , Expressão Gênica , Inflamação/genética , Inflamação/metabolismo , Masculino , Camundongos , Microglia/metabolismo , Obesidade/genética , Obesidade/metabolismo , Receptores Acoplados a Proteínas G/genética
2.
J Clin Periodontol ; 44(11): 1153-1163, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28800160

RESUMO

AIM: To evaluate the effects of physical training on inflammatory and behavioural parameters of Wistar rats with periodontal disease (PD). MATERIALS AND METHODS: Twenty four animals were distributed in a 2 × 2 factorial design (with and without exercise, with and without PD). Trained animals swimmed one hour daily during 8 weeks. PD was induced by ligature 14 days before the end of experiment, and in the last week, all animals were submitted to the Marble Burying Test. Histomorphometric analyses of the mandibles and expression of cytokines were conducted by Western blotting. We also evaluated the morphometry of hippocampal astrocytes using anti-glial fibrillary acidic protein antibody. RESULTS: Physical training attenuated bone loss and epithelial attachment loss levels of rats with PD. Trained animals with PD presented lower TNF-α expression in periodontal tissues while IL-10 was increased. TNF-α/IL-10 ratio was lower in trained animals with PD compared to those with induced periodontitis. PD increased anxiety-like behaviour, and physical training attenuated this parameter. Exercise increased the ramifications of hippocampal astrocytes in rats without PD. CONCLUSIONS: Exercise decreased anxiety behaviour, inflammatory proteins expression and bone loss in rats with PD.


Assuntos
Perda do Osso Alveolar/prevenção & controle , Ansiedade/prevenção & controle , Periodontite/terapia , Condicionamento Físico Animal , Animais , Western Blotting , Citocinas/análise , Gengiva/química , Masculino , Periodontite/psicologia , Ratos , Ratos Wistar
3.
J Strength Cond Res ; 23(7): 2149-54, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19855345

RESUMO

The purpose of this study was to investigate, in older women, the acute effect of static stretching (SS) on both muscle activation and force output. Twenty-three older women (64.6 +/- 7.1 yr) participated in the study. The maximal voluntary contraction (MVC), rate of force development (RFD) (50, 100, 150, and 200 ms relative to onset of muscular contraction), and peak RFD (PRFD) (the steepest slope of the curve during the first 200 ms) were tested under 2 randomly separate conditions: SS and control (C). Electromyographic (EMG) activity of the vastus medialis (VM), vastus lateralis (VL), and biceps femoris (BF) muscles also was assessed. The MVC was significantly lower (p < 0.05) in the 3 trials of SS when compared with the C condition (control: 925.0 +/- 50.9 N; trial 1: 854.3 +/- 55.3 N; trial 2: 863.1 +/- 52.2 N; and trial 3: 877.5 +/- 49.9 N). PRFD showed a significant decrease only for the first 2 trials of SS when compared with the C condition (control: 2672.3 +/- 259.1 N/s; trial 1: 2296.6 +/- 300.7 N/s; and trial 2: 2197.9 +/- 246.3 N/s). However, no difference was found for RFD (50, 100, 150, and 200 ms relative to onset of muscular contraction). The EMG activity for VM, VL, and BF was not significantly different between the C and SS conditions. In conclusion, the older women's capacity to produce muscular force decreased after their performance of SS exercises. The mechanisms responsible for this effect do not appear to be related to muscle activation. Thus, if flexibility is to be trained, it is recommended that SS does not occur just before the performance of activities that require high levels of muscular force.


Assuntos
Contração Isométrica/fisiologia , Exercícios de Alongamento Muscular , Músculo Esquelético/fisiologia , Idoso , Nádegas , Feminino , Humanos , Pessoa de Meia-Idade
4.
Biochim Biophys Acta Mol Basis Dis ; 1865(6): 1126-1137, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30738810

RESUMO

In experimental obesity, the hypothalamus is affected by an inflammatory response activated by dietary saturated fats. This inflammation is triggered as early as one day after exposure to a high-fat diet, and during its progression, there is recruitment of inflammatory cells from the systemic circulation. The objective of the present study was identifying chemokines potentially involved in the development of hypothalamic diet-induced inflammation. In order to identify chemokines potentially involved in this process, we performed a real-time PCR array that determined Ackr2 as one of the transcripts undergoing differential regulation in obese-prone as compared to obese-resistant mice fed a high-fat diet for three days. ACKR2 is a decoy receptor that acts as an inhibitor of the signals generated by several CC inflammatory chemokines. Our results show that Ackr2 expression is rapidly induced after exposure to dietary fats both in obese-prone and obese-resistant mice. In immunofluorescence studies, ACKR2 was detected in hypothalamic neurons expressing POMC and NPY and also in microglia and astrocytes. The lentiviral overexpression of ACKR2 in the hypothalamus reduced diet-induced hypothalamic inflammation; however, there was no change in spontaneous caloric intake and body mass. Nevertheless, the overexpression of ACKR2 resulted in improvement of glucose tolerance, which was accompanied by reduced insulin secretion and increased whole body insulin sensitivity. Thus, ACKR2 is a decoy chemokine receptor expressed in most hypothalamic cells that is modulated by dietary intervention and acts to reduce diet-induced inflammation, leading to improved glucose tolerance due to improved insulin action.


Assuntos
Perfilação da Expressão Gênica , Glucose/metabolismo , Hipotálamo/metabolismo , Inflamação/genética , Obesidade/genética , Receptores de Quimiocinas/genética , Animais , Astrócitos/metabolismo , Citocinas/genética , Citocinas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Teste de Tolerância a Glucose , Hipotálamo/citologia , Inflamação/etiologia , Inflamação/metabolismo , Resistência à Insulina/genética , Masculino , Camundongos , Neurônios/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Receptores de Quimiocinas/metabolismo
5.
Front Cell Neurosci ; 12: 88, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29643769

RESUMO

Obesity is a public health issue that affects more than 600 million adults worldwide. The disease is characterized by fat accumulation, mainly in the abdominal area. The human body is mainly composed of two types of adipose tissue: white adipose tissue (WAT) and brown adipose tissue (BAT); however, the browning process generates a different type of brown fat-like adipocyte in WAT, which similar to BAT has thermogenic capacity by activating UCP-1. The hypothalamic arcuate nucleus plays an important role in WAT browning via POMC neurons, which are influenced by synergistic insulin and leptin signaling. On the other hand, stimulation of AgRP neurons suppresses WAT browning. The hypothalamic inflammatory process that occurs in obesity impairs insulin and leptin signaling in this tissue and, consequently, can decrease WAT browning. In addition, practicing physical exercise may be a great strategy for triggering the browning process since it reduces hypothalamic inflammation and increases POMC neurons gene expression. Moreover, physical exercise stimulates irisin gene expression, which has an important impact on thermogenesis, which in turn culminates in increased gene expression of proteins such as UCP-1 and Cidea, which are related to WAT browning. Furthermore, thermogenetic activation of WAT leads to increased energy expenditure, favoring obesity treatment. Therefore, this mini-review aimed to highlight the most recent studies that link the control of hypothalamic activity with the browning metabolism of adipose tissue in response to physical exercise.

6.
Endocrinology ; 155(8): 2831-44, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24892821

RESUMO

In both human and experimental obesity, inflammatory damage to the hypothalamus plays an important role in the loss of the coordinated control of food intake and energy expenditure. Upon prolonged maintenance of increased body mass, the brain changes the defended set point of adiposity, and returning to normal weight becomes extremely difficult. Here we show that in prolonged but not in short-term obesity, the ubiquitin/proteasome system in the hypothalamus fails to maintain an adequate rate of protein recycling, leading to the accumulation of ubiquitinated proteins. This is accompanied by an increased colocalization of ubiquitin and p62 in the arcuate nucleus and reduced expression of autophagy markers in the hypothalamus. Genetic protection from obesity is accompanied by the normal regulation of the ubiquitin/proteasome system in the hypothalamus, whereas the inhibition of proteasome or p62 results in the acceleration of body mass gain in mice exposed for a short period to a high-fat diet. Thus, the defective regulation of the ubiquitin/proteasome system in the hypothalamus may be an important mechanism involved in the progression and autoperpetuation of obesity.


Assuntos
Hipotálamo/metabolismo , Obesidade/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Animais , Autofagia , Dieta Hiperlipídica , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Microglia/metabolismo , Neurônios/metabolismo , Fenótipo , Fator de Transcrição TFIIH , Fatores de Transcrição/metabolismo , Aumento de Peso , Redução de Peso
7.
Diabetes ; 63(11): 3770-84, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24947351

RESUMO

Hypothalamic inflammation is a common feature of experimental obesity. Dietary fats are important triggers of this process, inducing the activation of toll-like receptor-4 (TLR4) signaling and endoplasmic reticulum stress. Microglia cells, which are the cellular components of the innate immune system in the brain, are expected to play a role in the early activation of diet-induced hypothalamic inflammation. Here, we use bone marrow transplants to generate mice chimeras that express a functional TLR4 in the entire body except in bone marrow-derived cells or only in bone marrow-derived cells. We show that a functional TLR4 in bone marrow-derived cells is required for the complete expression of the diet-induced obese phenotype and for the perpetuation of inflammation in the hypothalamus. In an obesity-prone mouse strain, the chemokine CX3CL1 (fractalkine) is rapidly induced in the neurons of the hypothalamus after the introduction of a high-fat diet. The inhibition of hypothalamic fractalkine reduces diet-induced hypothalamic inflammation and the recruitment of bone marrow-derived monocytic cells to the hypothalamus; in addition, this inhibition reduces obesity and protects against diet-induced glucose intolerance. Thus, fractalkine is an important player in the early induction of diet-induced hypothalamic inflammation, and its inhibition impairs the induction of the obese and glucose intolerance phenotypes.


Assuntos
Quimiocina CX3CL1/metabolismo , Hipotálamo/metabolismo , Inflamação/metabolismo , Obesidade/metabolismo , Animais , Quimiocina CX3CL1/genética , Dieta Hiperlipídica/efeitos adversos , Citometria de Fluxo , Hipotálamo/imunologia , Immunoblotting , Inflamação/etiologia , Inflamação/imunologia , Masculino , Camundongos , Obesidade/etiologia , Obesidade/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA