Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Ann Bot ; 133(2): 349-364, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38097270

RESUMO

BACKGROUND: Bananas and plantains (Musa spp.) are among the most important crops worldwide. The cultivated varieties are vegetatively propagated, so their genetic diversity is essentially fixed over time. Musa acuminata, M. balbisiana and M. schizocarpa have provided the named A, B and S subgenomes that predominantly constitute these varieties. Here we aimed to characterize intergenetic recombination and chromosomal imbalances between these A/B/S subgenomes, which often result in copy-number variants (CNVs) leading to changes in gene dosage and phenotype, in a diverse panel of bananas and plantains. This will allow us to characterize varietal lineages better and identify sources of genetic variation. METHODS: We delimited population structure and clonal lineages in a diverse panel of 188 banana and plantain accessions from the most common cultivars using admixture, principal component and phylogenetic analyses. We used new scalable alignment-based methods, Relative Averaged Alignment (RAA) and Relative Coverage, to infer subgenome composition (AA, AAB, etc.) and interspecific recombination. RESULTS: In our panel, we identified ten varietal lineages composed of somatic clones, plus three groups of tetraploid accessions. We identified chromosomal exchanges resulting in gains/losses in chromosomal segments (CNVs), particularly in AAB and ABB varieties. CONCLUSIONS: We demonstrated alignment-based RAA and Relative Coverage can identify subgenome composition and introgressions with similar results to more complex approaches based on single nucleotide polymorphism (SNP) databases. These ab initio species-agnostic methods can be used without sequencing a panel of wild ancestors to find private SNPs, or in recently diverged pools where private SNPs are uncommon. The extensive A/B/S exchanges and the variation in the length of some introgressions between lineages further support multiple foundational events of hybridization and residual backcrossing. Imbalances between A/B/S may have resulted in CNVs and gene dosage variation. Since most edible banana genomes are fixed on time, these CNVs are stable genetic variations probably associated with phenotypic variation for future genetic studies.


Assuntos
Musa , Filogenia , Musa/genética , Genoma de Planta/genética , Diploide , Recombinação Genética/genética
2.
Ann Bot ; 131(1): 87-108, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34874999

RESUMO

BACKGROUND AND AIMS: Diploid and polyploid Urochloa (including Brachiaria, Panicum and Megathyrsus species) C4 tropical forage grasses originating from Africa are important for food security and the environment, often being planted in marginal lands worldwide. We aimed to characterize the nature of their genomes, the repetitive DNA and the genome composition of polyploids, leading to a model of the evolutionary pathways within the group including many apomictic species. METHODS: Some 362 forage grass accessions from international germplasm collections were studied, and ploidy was determined using an optimized flow cytometry method. Whole-genome survey sequencing and molecular cytogenetic analysis were used to identify chromosomes and genomes in Urochloa accessions belonging to the 'brizantha' and 'humidicola' agamic complexes and U. maxima. KEY RESULTS: Genome structures are complex and variable, with multiple ploidies and genome compositions within the species, and no clear geographical patterns. Sequence analysis of nine diploid and polyploid accessions enabled identification of abundant genome-specific repetitive DNA motifs. In situ hybridization with a combination of repetitive DNA and genomic DNA probes identified evolutionary divergence and allowed us to discriminate the different genomes present in polyploids. CONCLUSIONS: We suggest a new coherent nomenclature for the genomes present. We develop a model of evolution at the whole-genome level in diploid and polyploid accessions showing processes of grass evolution. We support the retention of narrow species concepts for Urochloa brizantha, U. decumbens and U. ruziziensis, and do not consider diploids and polyploids of single species as cytotypes. The results and model will be valuable in making rational choices of parents for new hybrids, assist in use of the germplasm for breeding and selection of Urochloa with improved sustainability and agronomic potential, and assist in measuring and conserving biodiversity in grasslands.


Assuntos
Brachiaria , Poaceae , Poaceae/genética , Brachiaria/genética , Poliploidia , Ploidias , Genômica
3.
J Exp Bot ; 72(2): 302-319, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33064149

RESUMO

Toxic concentrations of aluminium cations and low phosphorus availability are the main yield-limiting factors in acidic soils, which represent half of the potentially available arable land. Brachiaria grasses, which are commonly sown as forage in the tropics because of their resilience and low demand for nutrients, show greater tolerance to high concentrations of aluminium cations (Al3+) than most other grass crops. In this work, we explored the natural variation in tolerance to Al3+ between high and low tolerant Brachiaria species and characterized their transcriptional differences during stress. We identified three QTLs (quantitative trait loci) associated with root vigour during Al3+ stress in their hybrid progeny. By integrating these results with a new Brachiaria reference genome, we identified 30 genes putatively responsible for Al3+ tolerance in Brachiaria. We observed differential expression during stress of genes involved in RNA translation, response signalling, cell wall composition, and vesicle location homologous to aluminium-induced proteins involved in limiting uptake or localizing the toxin. However, there was limited regulation of malate transporters in Brachiaria, which suggests that exudation of organic acids and other external tolerance mechanisms, common in other grasses, might not be relevant in Brachiaria. The contrasting regulation of RNA translation and response signalling suggests that response timing is critical in high Al3+-tolerant Brachiaria.


Assuntos
Brachiaria , Alumínio/toxicidade , Brachiaria/genética , Poaceae/genética , Locos de Características Quantitativas
4.
Ann Bot ; 128(5): 627-637, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34320174

RESUMO

BACKGROUND AND AIMS: The C4Urochloa species (syn. Brachiaria) and Megathyrsus maximus (syn. Panicum maximum) are used as pasture for cattle across vast areas in tropical agriculture systems in Africa and South America. A key target for variety improvement is forage quality: enhanced digestibility could decrease the amount of land required per unit production, and enhanced lipid content could decrease methane emissions from cattle. For these traits, loss-of-function (LOF) alleles in known gene targets are predicted to improve them, making a reverse genetics approach of allele mining feasible. We therefore set out to look for such alleles in diverse accessions of Urochloa species and Megathyrsus maximus from the genebank collection held at the CIAT. METHODS: We studied allelic diversity of 20 target genes (11 for digestibility, nine for lipid content) in 104 accessions selected to represent genetic diversity and ploidy levels of U. brizantha, U. decumbens, U. humidicola, U. ruziziensis and M. maximum. We used RNA sequencing and then bait capture DNA sequencing to improve gene models in a U. ruziziensis reference genome to assign polymorphisms with high confidence. KEY RESULTS: We found 953 non-synonymous polymorphisms across all genes and accessions; within these, we identified seven putative LOF alleles with high confidence, including those in the non-redundant SDP1 and BAHD01 genes present in diploid and tetraploid accessions. These LOF alleles could respectively confer increased lipid content and digestibility if incorporated into a breeding programme. CONCLUSIONS: We demonstrated a novel, effective approach to allele discovery in diverse accessions using a draft reference genome from a single species. We used this to find gene variants in a collection of tropical grasses that could help reduce the environmental impact of cattle production.


Assuntos
Brachiaria , Poaceae , Alelos , Animais , Brachiaria/genética , Bovinos , Meio Ambiente , Melhoramento Vegetal , Poaceae/genética
5.
BMC Plant Biol ; 18(1): 379, 2018 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-30594130

RESUMO

BACKGROUND: There are clear differences in embryo development between angiosperm and gymnosperm species. Most of the current knowledge on gene expression and regulation during plant embryo development has derived from studies on angiosperms species, in particular from the model plant Arabidopsis thaliana. The few published studies on transcript profiling of conifer embryogenesis show the existence of many putative embryo-specific transcripts without an assigned function. In order to extend the knowledge on the transcriptomic expression during conifer embryogenesis, we sequenced the transcriptome of zygotic embryos for several developmental stages that cover most of Pinus pinaster (maritime pine) embryogenesis. RESULTS: Total RNA samples collected from five zygotic embryo developmental stages were sequenced with Illumina technology. A de novo transcriptome was assembled as no genome sequence is yet published for Pinus pinaster. The transcriptome of reference for the period of zygotic embryogenesis in maritime pine contains 67,429 transcripts, which likely encode 58,527 proteins. The annotation shows a significant percentage, 31%, of predicted proteins exclusively present in pine embryogenesis. Functional categories and enrichment analysis of the differentially expressed transcripts evidenced carbohydrate transport and metabolism over-representation in early embryo stages, as highlighted by the identification of many putative glycoside hydrolases, possibly associated with cell wall modification, and carbohydrate transport transcripts. Moreover, the predominance of chromatin remodelling events was detected in early to middle embryogenesis, associated with an active synthesis of histones and their post-translational modifiers related to increased transcription, as well as silencing of transposons. CONCLUSIONS: Our results extend the understanding of gene expression and regulation during zygotic embryogenesis in conifers and are a valuable resource to support further improvements in somatic embryogenesis for vegetative propagation of conifer species. Specific transcripts associated with carbohydrate metabolism, monosaccharide transport and epigenetic regulation seem to play an important role in pine early embryogenesis and may be a source of reliable molecular markers for early embryogenesis.


Assuntos
Perfilação da Expressão Gênica , Pinus/embriologia , Sementes/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Pinus/genética , Pinus/crescimento & desenvolvimento , Pinus/metabolismo , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase , RNA de Plantas/genética , Sementes/crescimento & desenvolvimento , Transcriptoma
6.
G3 (Bethesda) ; 14(8)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38775627

RESUMO

Bananas (Musa spp.) are an essential fruit worldwide and rank as the fourth most significant food crop for addressing malnutrition due to their rich nutrients and starch content. The potential of their genetic diversity remains untapped due to limited molecular breeding tools. Our study examined a phenotypically diverse group of 124 accessions from the Colombian Musaceae Collection conserved in AGROSAVIA. We assessed 12 traits categorized into morphology, fruit quality, and yield, alongside sequence data. Our sequencing efforts provided valuable insights, with an average depth of about 7× per accession, resulting in 187,133 single-nucleotide polymorphisms (SNPs) against Musa acuminata (A genome) and 220,451 against Musa balbisiana (B genome). Population structure analysis grouped samples into four and five clusters based on the reference genome. By using different association models, we identified marker-trait associations (MTAs). The mixed linear model revealed four MTAs, while the Bayesian-information and linkage-disequilibrium iteratively nested keyway and fixed and random model for circulating probability unification models identified 82 and 70 MTAs, respectively. We identified 38 and 40 candidate genes in linkage proximity to significant MTAs for the A genome and B genome, respectively. Our findings provide insights into the genetic underpinnings of morphology, fruit quality, and yield. Once validated, the SNP markers and candidate genes can potentially drive advancements in genomic-guided breeding strategies to enhance banana crop improvement.


Assuntos
Frutas , Estudo de Associação Genômica Ampla , Musa , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Musa/genética , Frutas/genética , Genoma de Planta , Fenótipo , Desequilíbrio de Ligação , Genes de Plantas , Característica Quantitativa Herdável
7.
Biotechnol Biofuels ; 14(1): 60, 2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33676571

RESUMO

BACKGROUND: Miscanthus is a commercial lignocellulosic biomass crop owing to its high biomass productivity, resilience and photosynthetic capacity at low temperature. These qualities make Miscanthus a particularly good candidate for temperate marginal land, where yields can be limited by insufficient or excessive water supply. Differences in response to water stress have been observed among Miscanthus species, which correlated to origin. In this study, we compared the physiological and molecular responses among Miscanthus species under excessive (flooded) and insufficient (drought) water supply in glasshouse conditions. RESULTS: A significant biomass loss was observed under drought conditions in all genotypes. M. x giganteus showed a lower reduction in biomass yield under drought conditions compared to the control than the other species. Under flooded conditions, biomass yield was as good as or better than control conditions in all species. 4389 of the 67,789 genes (6.4%) in the reference genome were differentially expressed during drought among four Miscanthus genotypes from different species. We observed the same biological processes were regulated across Miscanthus species during drought stress despite the DEGs being not similar. Upregulated differentially expressed genes were significantly involved in sucrose and starch metabolism, redox, and water and glycerol homeostasis and channel activity. Multiple copies of the starch metabolic enzymes BAM and waxy GBSS-I were strongly up-regulated in drought stress in all Miscanthus genotypes, and 12 aquaporins (PIP1, PIP2 and NIP2) were also up-regulated in drought stress across genotypes. CONCLUSIONS: Different phenotypic responses were observed during drought stress among Miscanthus genotypes from different species, supporting differences in genetic adaption. The low number of DEGs and higher biomass yield in flooded conditions supported Miscanthus use in flooded land. The molecular processes regulated during drought were shared among Miscanthus species and consistent with functional categories known to be critical during drought stress in model organisms. However, differences in the regulated genes, likely associated with ploidy and heterosis, highlighted the value of exploring its diversity for breeding.

8.
Biotechnol Biofuels ; 14(1): 98, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33874976

RESUMO

BACKGROUND: Miscanthus is a commercial lignocellulosic biomass crop owing to its high biomass productivity and low chemical input requirements. Within an interspecific Miscanthus cross, progeny with high biomass yield were shown to have low concentrations of starch and sucrose but high concentrations of fructose. We performed a transcriptional RNA-seq analysis between selected Miscanthus hybrids with contrasting values for these phenotypes to clarify how these phenotypes are genetically controlled. RESULTS: We observed that genes directly involved in the synthesis and degradation of starch and sucrose were down-regulated in high-yielding Miscanthus hybrids. At the same time, glycolysis and export of triose phosphates were up-regulated in high-yielding Miscanthus hybrids. These differentially expressed genes and biological functions were regulated by a well-connected network of less than 25 co-regulated transcription factors. CONCLUSIONS: Our results evidence a direct relationship between high expression of essential enzymatic genes in the starch and sucrose pathways and co-expression with their transcriptional regulators, with high starch concentrations and lower biomass production. The strong interconnectivity between gene expression and regulators, chemotype and agronomic traits opens the door to use the expression of well-characterised genes associated with carbohydrate metabolism, particularly in the starch and sucrose pathway, for the early selection of high biomass-yielding genotypes from large Miscanthus populations.

9.
Genes (Basel) ; 12(7)2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201593

RESUMO

Urochloa (including Brachiaria, Megathyrus and some Panicum) tropical grasses are native to Africa and are now, after selection and breeding, planted worldwide, particularly in South America, as important forages with huge potential for further sustainable improvement and conservation of grasslands. We aimed to develop an optimized approach to determine ploidy of germplasm collection of this tropical forage grass group using dried leaf material, including approaches to collect, dry and preserve plant samples for flow cytometry analysis. Our methods enable robust identification of ploidy levels (coefficient of variation of G0/G1 peaks, CV, typically <5%). Ploidy of some 348 forage grass accessions (ploidy range from 2x to 9x), from international genetic resource collections, showing variation in basic chromosome numbers and reproduction modes (apomixis and sexual), were determined using our defined standard protocol. Two major Urochloa agamic complexes are used in the current breeding programs at CIAT and EMBRAPA: the 'brizantha' and 'humidicola' agamic complexes are variable, with multiple ploidy levels. Some U. brizantha accessions have odd level of ploidy (5x), and the relative differences in fluorescence values of the peak positions between adjacent cytotypes is reduced, thus more precise examination of this species is required. Ploidy measurement of U. humidicola revealed aneuploidy.


Assuntos
Citometria de Fluxo , Folhas de Planta/genética , Ploidias , Poaceae/genética , Genoma de Planta/genética
10.
Rice (N Y) ; 14(1): 52, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34110541

RESUMO

BACKGROUND: Vietnam possesses a vast diversity of rice landraces due to its geographical situation, latitudinal range, and a variety of ecosystems. This genetic diversity constitutes a highly valuable resource at a time when the highest rice production areas in the low-lying Mekong and Red River Deltas are enduring increasing threats from climate changes, particularly in rainfall and temperature patterns. RESULTS: We analysed 672 Vietnamese rice genomes, 616 newly sequenced, that encompass the range of rice varieties grown in the diverse ecosystems found throughout Vietnam. We described four Japonica and five Indica subpopulations within Vietnam likely adapted to the region of origin. We compared the population structure and genetic diversity of these Vietnamese rice genomes to the 3000 genomes of Asian cultivated rice. The named Indica-5 (I5) subpopulation was expanded in Vietnam and contained lowland Indica accessions, which had very low shared ancestry with accessions from any other subpopulation and were previously overlooked as admixtures. We scored phenotypic measurements for nineteen traits and identified 453 unique genotype-phenotype significant associations comprising twenty-one QTLs (quantitative trait loci). The strongest associations were observed for grain size traits, while weaker associations were observed for a range of characteristics, including panicle length, heading date and leaf width. CONCLUSIONS: We showed how the rice diversity within Vietnam relates to the wider Asian rice diversity by using a number of approaches to provide a clear picture of the novel diversity present within Vietnam, mainly around the Indica-5 subpopulation. Our results highlight differences in genome composition and trait associations among traditional Vietnamese rice accessions, which are likely the product of adaption to multiple environmental conditions and regional preferences in a very diverse country. Our results highlighted traits and their associated genomic regions that are a potential source of novel loci and alleles to breed a new generation of low input sustainable and climate resilient rice.

11.
Sci Rep ; 5: 17394, 2015 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-26617401

RESUMO

Red clover (Trifolium pratense L.) is a globally significant forage legume in pastoral livestock farming systems. It is an attractive component of grassland farming, because of its high yield and protein content, nutritional value and ability to fix atmospheric nitrogen. Enhancing its role further in sustainable agriculture requires genetic improvement of persistency, disease resistance, and tolerance to grazing. To help address these challenges, we have assembled a chromosome-scale reference genome for red clover. We observed large blocks of conserved synteny with Medicago truncatula and estimated that the two species diverged ~23 million years ago. Among the 40,868 annotated genes, we identified gene clusters involved in biochemical pathways of importance for forage quality and livestock nutrition. Genotyping by sequencing of a synthetic population of 86 genotypes show that the number of markers required for genomics-based breeding approaches is tractable, making red clover a suitable candidate for association studies and genomic selection.


Assuntos
Genoma de Planta , Característica Quantitativa Herdável , Trifolium/genética , Biologia Computacional/métodos , Genes de Plantas , Genômica/métodos , Desequilíbrio de Ligação , Anotação de Sequência Molecular , Família Multigênica , Fenótipo , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA