Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Phys Rev Lett ; 123(3): 031101, 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31386438

RESUMO

The Laser Ranging Interferometer (LRI) instrument on the Gravity Recovery and Climate Experiment (GRACE) Follow-On mission has provided the first laser interferometric range measurements between remote spacecraft, separated by approximately 220 km. Autonomous controls that lock the laser frequency to a cavity reference and establish the 5 degrees of freedom two-way laser link between remote spacecraft succeeded on the first attempt. Active beam pointing based on differential wave front sensing compensates spacecraft attitude fluctuations. The LRI has operated continuously without breaks in phase tracking for more than 50 days, and has shown biased range measurements similar to the primary ranging instrument based on microwaves, but with much less noise at a level of 1 nm/sqrt[Hz] at Fourier frequencies above 100 mHz.

2.
Appl Opt ; 53(22): 4881-5, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25090317

RESUMO

Coherent combination of multiple lasers using an optical phased array (OPA) is an effective way to scale optical intensity in the far field beyond the capabilities of single fiber lasers. Using an actively phase locked, internally sensed, 2D OPA we demonstrate over 95% fringe visibility of the interfered beam, λ/120 RMS output phase stability over a 5 Hz bandwidth, and quadratic scaling of intensity in the far field using three emitters. This paper presents a new internally sensed OPA architecture that employs a modified version of digitally enhanced heterodyne interferometry (DEHI) based on code division multiplexing to measure and control the phase of each emitter. This internally sensed architecture can be implemented with no freespace components, offering improved robustness to shock and vibration exhibited by all-fiber devices. To demonstrate the concept, a single laser is split into three channels/emitters, each independently controlled using separate electro-optic modulators. The output phase of each channel is measured using DEHI to sense the small fraction of light that is reflected back into the fiber at the OPA's glass-air interface. The relative phase between emitters is used to derive the control signals needed to stabilize their relative path lengths and maintain coherent combination in the far field.

3.
Phys Eng Sci Med ; 45(3): 901-914, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35997925

RESUMO

We investigate the properties of a light emitting diode (LED) flatbed scanner for use with EBT3 and EBT-XD film types in a clinical radiochromic film (RCF) dosimetry program with modern treatment techniques. The flatbed scanner was characterised in terms of lateral and longitudinal response, X-Y scaling integrity, scanning reproducibility, scanner warm up dependence and film orientation dependence. The preferred lateral response artefact (LRA) corrections are investigated for the LED light source. Supporting evidence is provided regarding the dose independent nature of the corrections while also providing results suggesting a potential film type independence. Results from 2D gamma analysis of four patient treatments were compared between the new 12000XL and existing 10000XL model. Lastly, a dose uncertainty analysis was performed for the film-scanner system combination. It may be concluded that the lateral response variation requires correction while the longitudinal response variation is insignificant. The linear scaling in the lateral and longitudinal directions are within 0.5% and the scanner reproducibility is stable. Scanner warm up dependence no longer exists, and effort should be made to maintain all film orientation in a study set within 15°. The LRA corrections are as reported substantially dose independent and there is evidence to support film type independence. Comparative gamma analysis of patient specific dose maps between the EPSON 10000XL (xenon fluorescent lamp) and 12000XL (LED) scanners showed that results are indistinguishable for both film types across the two scanner models when the necessary corrections are applied. Dose uncertainty is in agreement with the literature and can be kept below 3% with necessary corrections applied.


Assuntos
Artefatos , Dosimetria Fotográfica , Calibragem , Dosimetria Fotográfica/métodos , Humanos , Reprodutibilidade dos Testes , Incerteza
4.
Phys Eng Sci Med ; 45(2): 457-473, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35235188

RESUMO

Magnetic resonance-guided radiotherapy technology is relatively new and commissioning publications, quality assurance (QA) protocols and commercial products are limited. This work provides guidance for implementation measurements that may be performed on the Elekta Unity MR-Linac (Elekta, Stockholm, Sweden). Adaptations of vendor supplied phantoms facilitated determination of gantry angle accuracy and linac isocentre, whereas in-house developed phantoms were used for end-to-end testing and anterior coil attenuation measurements. Third-party devices were used for measuring beam quality, reference dosimetry and during treatment plan commissioning; however, due to several challenges, variations on standard techniques were required. Gantry angle accuracy was within 0.1°, confirmed with pixel intensity profiles, and MV isocentre diameter was < 0.5 mm. Anterior coil attenuation was approximately 0.6%. Beam quality as determined by TPR20,10 was 0.705 ± 0.001, in agreement with treatment planning system (TPS) calculations, and gamma comparison against the TPS for a 22.0 × 22.0 cm2 field was above 95.0% (2.0%, 2.0 mm). Machine output was 1.000 ± 0.002 Gy per 100 MU, depth 5.0 cm. During treatment plan commissioning, sub-standard results indicated issues with machine behaviour. Once rectified, gamma comparisons were above 95.0% (2.0%, 2.0 mm). Centres which may not have access to specialized equipment can use in-house developed phantoms, or adapt those supplied by the vendor, to perform commissioning work and confirm operation of the MRL within published tolerances. The plan QA techniques used in this work can highlight issues with machine behaviour when appropriate gamma criteria are set.


Assuntos
Aceleradores de Partículas , Radioterapia Guiada por Imagem , Raios gama , Imagens de Fantasmas , Radiometria
5.
Phys Rev Lett ; 104(21): 211103, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20867084

RESUMO

We report on the first demonstration of time-delay interferometry (TDI) for LISA, the Laser Interferometer Space Antenna. TDI was implemented in a laboratory experiment designed to mimic the noise couplings that will occur in LISA. TDI suppressed laser frequency noise by approximately 10(9) and clock phase noise by 6×10(4), recovering the intrinsic displacement noise floor of our laboratory test bed. This removal of laser frequency noise and clock phase noise in postprocessing marks the first experimental validation of the LISA measurement scheme.

6.
Opt Express ; 17(2): 828-37, 2009 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-19158897

RESUMO

Digitally enhanced heterodyne interferometry is a laser metrology technique employing pseudo-random codes phase modulated onto an optical carrier. We present the first characterization of the technique's displacement sensitivity. The displacement of an optical cavity was measured using digitally enhanced heterodyne interferometry and compared to a simultaneous readout based on conventional Pound-Drever-Hall locking. The techniques agreed to within 5 pm/ radicalHz at 1 Hz, providing an upper bound to the displacement noise of digitally enhanced heterodyne interferometry. These measurements employed a real-time signal extraction system implemented on a field programmable gate array, suitable for closed-loop control applications. We discuss the applicability of digitally enhanced heterodyne interferometry for lock acquisition of advanced gravitational wave detectors.

7.
Opt Lett ; 30(10): 1219-21, 2005 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-15943315

RESUMO

We present an experimental technique that permits mechanical-noise-free, cavity-enhanced frequency measurements of an atomic transition and its hyperfine structure. We employ the 532-nm frequency-doubled output from a Nd:YAG laser and an iodine vapor cell. The cell is placed in a folded ring cavity (FRC) with counterpropagating pump and probe beams. The FRC is locked with the Pound-Drever-Hall technique. Mechanical noise is rejected by differencing the pump and probe signals. In addition, this differenced error signal provides a sensitive measure of differential nonlinearity within the FRC.

8.
Opt Lett ; 27(17): 1507-9, 2002 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18026488

RESUMO

The results of an experimental demonstration of a benchtop Michelson interferometer with a variable-reflectivity signal mirror are presented. This variable reflectivity is achieved by employment of a second Michelson interferometer. The results are presented in the form of the frequency responses obtained from this configuration with a signal laser injection method. It is shown that the frequency response can be dynamically tuned with independent peak frequency and bandwidth control. Such a configuration gives a tunable frequency response and has an application as a flexible gravitational-wave detector.

9.
Opt Lett ; 29(20): 2339-41, 2004 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-15532260

RESUMO

An experimental technique to observe and accurately measure the Gouy phase evolution of Hermite-Gaussian modes is presented. Because of the unique features of spatial mode interference frequency-locking error signals, we are able to readily perform explicit measurement of the Gouy phase in a simple and highly accurate manner. We present these data and discuss the technique and its implications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA