Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pain Pract ; 20(1): 75-87, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31424152

RESUMO

BACKGROUND: Experimental and clinical studies have shown that tonic spinal cord stimulation (SCS) releases gamma-aminobutyric acid (GABA) in the spinal dorsal horn. Recently, it was suggested that burst SCS does not act via spinal GABAergic mechanisms. Therefore, we studied spinal GABA release during burst and tonic SCS, both anatomically and pharmacologically, in a well-established chronic neuropathic pain model. METHODS: Animals underwent partial sciatic nerve ligation (PSNL). Quantitative immunohistochemical (IHC) analysis of intracellular GABA levels in the lumbar L4 to L6 dorsal spinal cord was performed after 60 minutes of burst, tonic, or sham SCS in rats that had undergone PSNL (n = 16). In a second pharmacological experiment, the effects of intrathecal administration of the GABAA antagonist bicuculline (5 µg) and the GABAB antagonist phaclofen (5 µg) were assessed. Paw withdrawal thresholds to von Frey filaments of rats that had undergone PSNL (n = 20) were tested during 60 minutes of burst and tonic SCS 30 minutes after intrathecal administration of the drugs. RESULTS: Quantitative IHC analysis of GABA immunoreactivity in spinal dorsal horn sections of animals that had received burst SCS (n = 5) showed significantly lower intracellular GABA levels when compared to sham SCS sections (n = 4; P = 0.0201) and tonic SCS sections (n = 7; P = 0.0077). Intrathecal application of the GABAA antagonist bicuculline (5 µg; n = 10) or the GABAB antagonist phaclofen (5 µg; n = 10) resulted in ablation of the analgesic effect for both burst SCS and tonic SCS. CONCLUSIONS: In conclusion, our anatomical and pharmacological data demonstrate that, in this well-established chronic neuropathic animal model, the analgesic effects of both burst SCS and tonic SCS are mediated via spinal GABAergic mechanisms.


Assuntos
Neuralgia/metabolismo , Estimulação da Medula Espinal/métodos , Ácido gama-Aminobutírico/metabolismo , Animais , Modelos Animais de Doenças , Ligadura , Masculino , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/lesões , Nervo Isquiático/cirurgia
2.
Mol Neurodegener ; 19(1): 33, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589893

RESUMO

Some individuals are able to maintain their cognitive abilities despite the presence of significant Alzheimer's Disease (AD) neuropathological changes. This discrepancy between cognition and pathology has been labeled as resilience and has evolved into a widely debated concept. External factors such as cognitive stimulation are associated with resilience to AD, but the exact cellular and molecular underpinnings are not completely understood. In this review, we discuss the current definitions used in the field, highlight the translational approaches used to investigate resilience to AD and summarize the underlying cellular and molecular substrates of resilience that have been derived from human and animal studies, which have received more and more attention in the last few years. From these studies the picture emerges that resilient individuals are different from AD patients in terms of specific pathological species and their cellular reaction to AD pathology, which possibly helps to maintain cognition up to a certain tipping point. Studying these rare resilient individuals can be of great importance as it could pave the way to novel therapeutic avenues for AD.


Assuntos
Doença de Alzheimer , Resiliência Psicológica , Animais , Humanos , Doença de Alzheimer/patologia , Encéfalo/patologia , Cognição
3.
Acta Neuropathol Commun ; 12(1): 68, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664739

RESUMO

Some individuals show a discrepancy between cognition and the amount of neuropathological changes characteristic for Alzheimer's disease (AD). This phenomenon has been referred to as 'resilience'. The molecular and cellular underpinnings of resilience remain poorly understood. To obtain an unbiased understanding of the molecular changes underlying resilience, we investigated global changes in gene expression in the superior frontal gyrus of a cohort of cognitively and pathologically well-defined AD patients, resilient individuals and age-matched controls (n = 11-12 per group). 897 genes were significantly altered between AD and control, 1121 between resilient and control and 6 between resilient and AD. Gene set enrichment analysis (GSEA) revealed that the expression of metallothionein (MT) and of genes related to mitochondrial processes was higher in the resilient donors. Weighted gene co-expression network analysis (WGCNA) identified gene modules related to the unfolded protein response, mitochondrial processes and synaptic signaling to be differentially associated with resilience or dementia. As changes in MT, mitochondria, heat shock proteins and the unfolded protein response (UPR) were the most pronounced changes in the GSEA and/or WGCNA, immunohistochemistry was used to further validate these processes. MT was significantly increased in astrocytes in resilient individuals. A higher proportion of the mitochondrial gene MT-CO1 was detected outside the cell body versus inside the cell body in the resilient compared to the control group and there were higher levels of heat shock protein 70 (HSP70) and X-box-binding protein 1 spliced (XBP1s), two proteins related to heat shock proteins and the UPR, in the AD donors. Finally, we show evidence for putative sex-specific alterations in resilience, including gene expression differences related to autophagy in females compared to males. Taken together, these results show possible mechanisms involving MTs, mitochondrial processes and the UPR by which individuals might maintain cognition despite the presence of AD pathology.


Assuntos
Doença de Alzheimer , Perfilação da Expressão Gênica , Metalotioneína , Mitocôndrias , Resposta a Proteínas não Dobradas , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Metalotioneína/genética , Metalotioneína/metabolismo , Feminino , Masculino , Idoso , Resposta a Proteínas não Dobradas/genética , Resposta a Proteínas não Dobradas/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/genética , Mitocôndrias/patologia , Idoso de 80 Anos ou mais , Resiliência Psicológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA