Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Antonie Van Leeuwenhoek ; 117(1): 104, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043958

RESUMO

Bacteria of the phylum Planctomycetota have received much attention over the years due to their unique cell biology and potential for biotechnological application. Within the phylum, bacteria of the class Phycisphaerae have been found in a multitude of environmental datasets. However, only a few species have been brought into culture so far and even enrichments are scarce. Therefore, very little is known about their lifestyle, which has hindered efforts to estimate their environmental relevance. Here, we analysed all medium- and high-quality Phycisphaerae genomes represented in the genome taxonomy database to learn more about their physiology. We combined automatic and manual annotation efforts to provide a bird's eye view of their diverse energy metabolisms. Contrasting previous reports, we did not find indications for the presence of genes for anaerobic ammonium oxidation in any Phycisphaerae genome. Instead, we found that many members of this class are adapted to a facultative anaerobic or strictly fermentative lifestyle and may be specialized in the breakdown of carbon compounds produced by other organisms. Based on these findings, we provide a practical overview of organic carbon substrates predicted to be utilized by Phycisphaerae families.


Assuntos
Carbono , Genoma Bacteriano , Carbono/metabolismo , Filogenia , Genômica/métodos , Planctomycetales/genética , Planctomycetales/classificação , Planctomycetales/metabolismo , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Metabolismo Energético
2.
Appl Environ Microbiol ; 87(13): e0004321, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33893122

RESUMO

Methane and ammonia have to be removed from wastewater treatment effluent in order to discharge it to receiving water bodies. A potential solution for this is a combination of simultaneous ammonia and methane oxidation by anaerobic ammonia oxidation (anammox) bacteria and nitrite/nitrate-dependent anaerobic methane oxidation (N-damo) microorganisms. When applied, these microorganisms will be exposed to oxygen, but little is known about the effect of a low concentration of oxygen on a culture containing these microorganisms. In this study, a stable coculture containing anammox and N-damo microorganisms in a laboratory scale bioreactor was established under oxygen limitation. Membrane inlet mass spectrometry (MIMS) was used to directly measure the in situ simultaneous activity of N-damo, anammox, and aerobic ammonia-oxidizing microorganisms. In addition, batch tests revealed that the bioreactor also harbored aerobic methanotrophs and anaerobic methanogens. Together with fluorescence in situ hybridization (FISH) analysis and metagenomics, these results indicate that the combination of N-damo and anammox activity under the continuous supply of limiting oxygen concentrations is feasible and can be implemented for the removal of methane and ammonia from anaerobic digester effluents. IMPORTANCE Nitrogen in wastewater leads to eutrophication of the receiving water bodies, and methane is a potent greenhouse gas; it is therefore important that these are removed from wastewater. A potential solution for the simultaneous removal of nitrogenous compounds and methane is the application of a combination of nitrite/nitrate-dependent methane oxidation (N-damo) and anaerobic ammonia oxidation (annamox). In order to do so, it is important to investigate the effect of oxygen on these two anaerobic processes. In this study, we investigate the effect of a continuous oxygen supply on the activity of an anaerobic methane- and ammonia-oxidizing coculture. The findings presented in this study are important for the potential application of these two microbial processes in wastewater treatment.


Assuntos
Amônia/metabolismo , Metano/metabolismo , Oxigênio , Poluentes Químicos da Água/metabolismo , Purificação da Água/métodos , Aerobiose , Anaerobiose , Archaea/metabolismo , Bactérias/metabolismo , Reatores Biológicos , Oxirredução
3.
Nature ; 528(7583): 555-9, 2015 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-26610025

RESUMO

Nitrification is a two-step process where ammonia is first oxidized to nitrite by ammonia-oxidizing bacteria and/or archaea, and subsequently to nitrate by nitrite-oxidizing bacteria. Already described by Winogradsky in 1890, this division of labour between the two functional groups is a generally accepted characteristic of the biogeochemical nitrogen cycle. Complete oxidation of ammonia to nitrate in one organism (complete ammonia oxidation; comammox) is energetically feasible, and it was postulated that this process could occur under conditions selecting for species with lower growth rates but higher growth yields than canonical ammonia-oxidizing microorganisms. Still, organisms catalysing this process have not yet been discovered. Here we report the enrichment and initial characterization of two Nitrospira species that encode all the enzymes necessary for ammonia oxidation via nitrite to nitrate in their genomes, and indeed completely oxidize ammonium to nitrate to conserve energy. Their ammonia monooxygenase (AMO) enzymes are phylogenetically distinct from currently identified AMOs, rendering recent acquisition by horizontal gene transfer from known ammonia-oxidizing microorganisms unlikely. We also found highly similar amoA sequences (encoding the AMO subunit A) in public sequence databases, which were apparently misclassified as methane monooxygenases. This recognition of a novel amoA sequence group will lead to an improved understanding of the environmental abundance and distribution of ammonia-oxidizing microorganisms. Furthermore, the discovery of the long-sought-after comammox process will change our perception of the nitrogen cycle.


Assuntos
Amônia/metabolismo , Bactérias/metabolismo , Nitratos/metabolismo , Nitrificação , Nitritos/metabolismo , Bactérias/enzimologia , Bactérias/genética , Evolução Molecular , Genoma Bacteriano/genética , Nitrificação/genética , Oxirredução , Oxirredutases/genética , Oxirredutases/metabolismo , Filogenia
4.
Appl Microbiol Biotechnol ; 104(16): 7201-7212, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32607646

RESUMO

Anaerobic wastewater treatment offers several advantages; however, the effluent of anaerobic digesters still contains high levels of ammonium and dissolved methane that need to be removed before these effluents can be discharged to surface waters. The simultaneous anaerobic removal of methane and ammonium by denitrifying (N-damo) methanotrophs in combination with anaerobic ammonium-oxidizing (anammox) bacteria could be a potential solution to this challenge. After a molecular survey of a wastewater plant treating brewery effluent, indicating the presence of both N-damo and anammox bacteria, we started an anaerobic bioreactor with a continuous supply of methane, ammonium, and nitrite to enrich these anaerobic microorganisms. After 14 months of operation, a stable enrichment culture containing two types of 'Candidatus Methylomirabilis oxyfera' bacteria and two strains of 'Ca. Brocadia'-like anammox bacteria was achieved. In this community, anammox bacteria converted 80% of the nitrite with ammonium, while 'Ca. Methylomirabilis' contributed to 20% of the nitrite consumption. The analysis of metagenomic 16S rRNA reads and fluorescence in situ hybridization (FISH) correlated well and showed that, after 14 months, 'Ca. Methylomirabilis' and anammox bacteria constituted approximately 30 and 20% of the total microbial community. In addition, a substantial part (10%) of the community consisted of Phycisphaera-related planctomycetes. Assembly and binning of the metagenomic sequences resulted in high-quality draft genome of two 'Ca. Methylomirabilis' species containing the marker genes pmoCAB, xoxF, and nirS and putative NO dismutase genes. The anammox draft genomes most closely related to 'Ca. Brocadia fulgida' included the marker genes hzsABC, hao, and hdh. Whole-reactor and batch anaerobic activity measurements with methane, ammonium, nitrite, and nitrate revealed an average anaerobic methane oxidation rate of 0.12 mmol h-1 L-1 and ammonium oxidation rate of 0.5 mmol h-1 L-1. Together, this study describes the enrichment and draft genomes of anaerobic methanotrophs from a brewery wastewater treatment plant, where these organisms together with anammox bacteria can contribute significantly to the removal of methane and ammonium in a more sustainable way. KEY POINTS: • An enrichment culture containing both N-damo and anammox bacteria was obtained. • Simultaneous consumption of ammonia, nitrite, and methane under anoxic conditions. • In-depth metagenomic biodiversity analysis of inoculum and enrichment culture.


Assuntos
Compostos de Amônio/metabolismo , Bactérias/classificação , Biodiversidade , Reatores Biológicos/microbiologia , Metano/metabolismo , Anaerobiose , Bactérias/metabolismo , Metagenômica , Oxirredução , RNA Ribossômico 16S/genética , Purificação da Água
5.
Environ Microbiol ; 21(10): 3627-3637, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31107587

RESUMO

The recently discovered comammox process encompasses both nitrification steps, the aerobic oxidation of ammonia and nitrite, in a single organism. All known comammox bacteria are affiliated with Nitrospira sublineage II and can be grouped into two distinct clades, referred to as A and B, based on ammonia monooxygenase phylogeny. In this study, we report high-quality draft genomes of two novel comammox Nitrospira from the terrestrial subsurface, representing one clade A and one clade B comammox organism. The two metagenome-assembled genomes were compared with other representatives of Nitrospira sublineage II, including both canonical and comammox Nitrospira. Phylogenomic analyses confirmed the affiliation of the two novel Nitrospira with comammox clades A and B respectively. Based on phylogenetic distance and pairwise average nucleotide identity values, both comammox Nitrospira were classified as novel species. Genomic comparison revealed high conservation of key metabolic features in sublineage II Nitrospira, including respiratory complexes I-V and the machineries for nitrite oxidation and carbon fixation via the reductive tricarboxylic acid cycle. In addition, the presence of the enzymatic repertoire for formate and hydrogen oxidation in the Rifle clades A and B comammox genomes, respectively, suggest a broader distribution of these metabolic features than previously anticipated.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Genoma Bacteriano , Amônia/metabolismo , Genômica , Metagenoma , Nitrificação , Nitritos/metabolismo , Oxirredução , Oxirredutases , Filogenia , Especificidade da Espécie
6.
Appl Environ Microbiol ; 85(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30770408

RESUMO

Nitrite-dependent methane-oxidizing bacteria couple the reduction of nitrite to the oxidation of methane via a unique oxygen-producing pathway. This process is carried out by members of the genus Methylomirabilis that belong to the NC10 phylum. Contrary to other known anaerobic methane oxidizers, they do not employ the reverse methanogenesis pathway for methane activation but instead a canonical particulate methane monooxygenase similar to those used by aerobic methanotrophs. Methylomirabilis-like bacteria are detected in many natural and manmade ecosystems, but their physiology is not well understood. Here, using continuous cultivation techniques, batch activity assays, and state-of-the-art membrane-inlet mass spectrometry, we determined growth rate, doubling time, and methane and nitrite affinities of the nitrite-dependent methane-oxidizing bacterium "Candidatus Methylomirabilis lanthanidiphila." Our results provide insight into understanding the interactions of these microorganisms with methanotrophs and other nitrite-reducing microorganisms, such as anaerobic ammonium-oxidizing bacteria. Furthermore, our data can be used in modeling studies as well as wastewater treatment plant design.IMPORTANCE Methane is an important greenhouse gas with a radiative forcing 28 times that of carbon dioxide over a 100-year time scale. The emission of methane to the atmosphere is controlled by aerobic and anaerobic methanotrophs, which are microorganisms that are able to oxidize methane to conserve energy. While aerobic methanotrophs have been studied for over a century, knowledge on the physiological characteristics of anaerobic methanotrophs is scarce. Here, we describe kinetic properties of "Candidatus Methylomirabilis lanthanidiphila," a nitrite-dependent methane-oxidizing microorganism, which is ecologically important and can be applied in wastewater treatment.


Assuntos
Metano/metabolismo , Methylococcaceae/metabolismo , Nitritos/metabolismo , Anaerobiose/fisiologia , Bactérias Anaeróbias/classificação , Bactérias Anaeróbias/metabolismo , Dióxido de Carbono/metabolismo , Meios de Cultura/química , Methylococcaceae/classificação , Methylococcaceae/enzimologia , Interações Microbianas/fisiologia , Oxirredução , Oxigenases , Águas Residuárias , Purificação da Água
7.
Environ Sci Technol ; 53(9): 5168-5175, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30945532

RESUMO

We describe an approach for determining biological N2 production in soils based on the proportions of naturally occurring 15N15N in N2. Laboratory incubation experiments reveal that biological N2 production, whether by denitrification or anaerobic ammonia oxidation, yields proportions of 15N15N in N2 that are within 1‰ of that predicted for a random distribution of 15N and 14N atoms. This relatively invariant isotopic signature contrasts with that of the atmosphere, which has 15N15N proportions in excess of the random distribution by 19.1 ± 0.1‰. Depth profiles of gases in agricultural soils from the Kellogg Biological Station Long-Term Ecological Research site show biological N2 accumulation that accounts for up to 1.6% of the soil N2. One-dimensional reaction-diffusion modeling of these soil profiles suggests that subsurface N2 pulses leading to surface emission rates as low as 0.3 mmol N2 m-2 d-1 can be detected with current analytical precision, decoupled from N2O production.


Assuntos
Óxido Nitroso , Solo , Agricultura , Desnitrificação , Nitrogênio , Microbiologia do Solo
8.
Appl Microbiol Biotechnol ; 103(1): 177-189, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30415428

RESUMO

Nitrification, the oxidation of ammonia via nitrite to nitrate, has been considered to be a stepwise process mediated by two distinct functional groups of microorganisms. The identification of complete nitrifying Nitrospira challenged not only the paradigm of labor division in nitrification, it also raises fundamental questions regarding the environmental distribution, diversity, and ecological significance of complete nitrifiers compared to canonical nitrifying microorganisms. Recent genomic and physiological surveys identified factors controlling their ecology and niche specialization, which thus potentially regulate abundances and population dynamics of the different nitrifying guilds. This review summarizes the recently obtained insights into metabolic differences of the known nitrifiers and discusses these in light of potential functional adaptation and niche differentiation between canonical and complete nitrifiers.


Assuntos
Amônia/metabolismo , Bactérias/metabolismo , Nitrificação , Nitrogênio/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Nitritos/metabolismo , Filogenia
9.
Appl Microbiol Biotechnol ; 103(16): 6783-6795, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31227868

RESUMO

The reject water of anaerobic digestors still contains high levels of methane and ammonium that need to be treated before these effluents can be discharged to surface waters. Simultaneous anaerobic methane and ammonium oxidation performed by nitrate/nitrite-dependent anaerobic methane-oxidizing(N-damo) microorganisms and anaerobic ammonium-oxidizing(anammox) bacteria is considered a potential solution to this challenge. Here, a stable coculture of N-damo archaea, N-damo bacteria, and anammox bacteria was obtained in a sequencing batch reactor fed with methane, ammonium, and nitrite. Nitrite and ammonium removal rates of up to 455 mg N-NO2- L-1 day-1 and 228 mg N-NH4+ L-1 were reached. All nitrate produced by anammox bacteria (57 mg N-NO3- L-1 day-1) was consumed, leading to a nitrogen removal efficiency of 97.5%. In the nitrite and ammonium limited state, N-damo and anammox bacteria each constituted about 30-40% of the culture and were separated as granules and flocs in later stages of the reactor operation. The N-damo archaea increased up to 20% and mainly resided in the granular biomass with their N-damo bacterial counterparts. About 70% of the nitrite in the reactor was removed via the anammox process, and batch assays confirmed that anammox activity in the reactor was close to its maximal potential activity. In contrast, activity of N-damo bacteria was much higher in batch, indicating that these bacteria were performing suboptimally in the sequencing batch reactor, and would probably be outcompeted by anammox bacteria if ammonium was supplied in excess. Together these results indicate that the combination of N-damo and anammox can be implemented for the removal of methane at the expense of nitrite and nitrate in future wastewater treatment systems.


Assuntos
Compostos de Amônio/metabolismo , Archaea/metabolismo , Bactérias Anaeróbias/metabolismo , Reatores Biológicos/microbiologia , Metano/metabolismo , Consórcios Microbianos , Interações Microbianas , Anaerobiose , Archaea/crescimento & desenvolvimento , Bactérias Anaeróbias/crescimento & desenvolvimento , Nitratos/metabolismo , Nitritos/metabolismo , Oxirredução
10.
Appl Microbiol Biotechnol ; 102(13): 5685-5694, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29725720

RESUMO

Wetlands contribute to 30% of global methane emissions due to an imbalance between microbial methane production and consumption. Methanogenesis and methanotrophy have mainly been studied separately, and little is known about their potential interactions in aquatic environments. To mimic the interaction between methane producers and oxidizers in the environment, we co-cultivated the methanogenic archaeon Methanosarcina barkeri with aerobic Methylocystaceae methanotrophs in an oxygen-limited bioreactor using acetate as methanogenic substrate. Methane, acetate, dissolved oxygen, available nitrogen, pH, temperature, and cell density were monitored to follow system stability and activity. Stable reactor operation was achieved for two consecutive periods of 2 months. Fluorescence in situ hybridization micrographs indicated close association between both groups of microorganisms. This association suggests that the methanotrophs profit from direct access to the methane that is produced from acetate, while methanogens are protected by the concomitant oxygen consumption of the methanotrophs. This proof of principle study can be used to set up systems to study their responses to environmental changes.


Assuntos
Reatores Biológicos , Microbiologia Ambiental , Methanosarcina barkeri/crescimento & desenvolvimento , Methylocystaceae/crescimento & desenvolvimento , Interações Microbianas , Hibridização in Situ Fluorescente , Metano/análise , Methanosarcina barkeri/metabolismo , Methylocystaceae/metabolismo , Oxigênio/metabolismo
11.
Microbiol Spectr ; : e0051624, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39166864

RESUMO

Since the discovery of complete ammonia oxidizers (comammox) within the genus Nitrospira, their distribution and abundance across habitats have been intensively studied to better understand their ecological significance. Many primers targeting their ammonia monooxygenase subunit A gene (amoA) have been designed to detect and quantify comammox bacteria and to describe their community structure. We identified 38 published primers, but only few had high coverage and specificity for all known comammox Nitrospira or one of the two described subclades. For each target group, we comprehensively evaluated selected primer pairs using in silico analyses, endpoint PCRs, qPCRs, and amplicon sequencing on samples from various environments. Endpoint PCRs and qPCRs showed that the most commonly used primer pairs (comaA-244F/659R, comaB-244F/659R, and Ntsp-amoA162F/359R) produced several bands, which likely inflated quantifications via qPCR. In contrast, the recently published primer combinations CA377F/C576R, CB377F/C576R, and CA-CB377F/C576R resulted mostly in a single band. Furthermore, amplicon sequencing demonstrated that these primer combinations also captured the highest richness of comammox Nitrospira. Taken together, our results indicate that few existing comammox amoA primer combinations have both high specificity and coverage and that the choice of these high-specificity and high-coverage primer pairs substantially impacts the accurate detection, quantification, and community description of comammox bacteria. We, therefore, recommend using the CA377F/C576R, CB377F/C576R, and CA-CB377F/C576R primer pairs.IMPORTANCEBacteria that can fully convert ammonia via nitrite to nitrate, the complete ammonia oxidizers (comammox), were recently discovered and are found in many natural and engineered environments. PCR-based tools to study their abundance and diversity were rapidly developed, resulting in a plethora of primers available, many of which are widely used. The presence of comammox bacteria in an environment can, however, only be correctly determined if the used primers detect all members of this group while not detecting any other guilds. This study assesses the coverage and specificity of existing primers targeting comammox bacteria using both computational and standard molecular techniques, revealing large differences in their performance. The uniform usage of well-performing primers across studies could aid in generating comparable and generalizable data to better understand the importance of comammox bacteria in the environment.

12.
ISME Commun ; 4(1): ycae092, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39071849

RESUMO

Recently, an activity-based labelling protocol for the in vivo detection of ammonia- and alkane-oxidizing bacteria became available. This functional tagging technique enabled targeted studies of these environmentally widespread functional groups, but it failed to capture ammonia-oxidizing archaea (AOA). Since their first discovery, AOA have emerged as key players within the biogeochemical nitrogen cycle, but our knowledge regarding their distribution and abundance in natural and engineered ecosystems is mainly derived from PCR-based and metagenomic studies. Furthermore, the archaeal ammonia monooxygenase is distinctly different from its bacterial counterparts and remains poorly understood. Here, we report on the development of an activity-based labelling protocol for the fluorescent detection of all ammonia- and alkane-oxidizing prokaryotes, including AOA. In this protocol, 1,5-hexadiyne is used as inhibitor of ammonia and alkane oxidation and as bifunctional enzyme probe for the fluorescent labelling of cells via the Cu(I)-catalyzed alkyne-azide cycloaddition reaction. Besides efficient activity-based labelling of ammonia- and alkane-oxidizing microorganisms, this method can also be employed in combination with deconvolution microscopy for determining the subcellular localization of their ammonia- and alkane-oxidizing enzyme systems. Labelling of these enzymes in diverse ammonia- and alkane-oxidizing microorganisms allowed their visualization on the cytoplasmic membranes, the intracytoplasmic membrane stacks of ammonia- and methane-oxidizing bacteria, and, fascinatingly, on vesicle-like structures in one AOA species. The development of this novel activity-based labelling method for ammonia- and alkane-oxidizers will be a valuable addition to the expanding molecular toolbox available for research of nitrifying and alkane-oxidizing microorganisms.

13.
Environ Microbiol Rep ; 16(3): e13262, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38725141

RESUMO

Common carp (Cyprinus carpio) were fed food with different protein concentrations following different feeding regimes, which were previously shown to affect growth, nitrogen excretion and amino acid catabolism. 16S rRNA gene amplicon sequencing was performed to investigate the gut microbiota of these fish. Lower dietary protein content increased microbial richness, while the combination of demand feeding and dietary protein content affected the composition of the gut microbiota. Hepatic glutamate dehydrogenase (GDH) activity was correlated to the composition of the gut microbiota in all dietary treatments. We found that demand-fed carp fed a diet containing 39% protein had a significantly higher abundance of Beijerinckiaceae compared to other dietary groups. Network analysis identified this family and two Rhizobiales families as hubs in the microbial association network. In demand-fed carp, the microbial association network had significantly fewer connections than in batch-fed carp. In contrast to the large effects of the feeding regime and protein content of the food on growth and nitrogen metabolism, it had only limited effects on gut microbiota composition. However, correlations between gut microbiota composition and liver GDH activity showed that host physiology and gut microbiota are connected, which warrants functional studies into the role of the gut microbiota in fish physiology.


Assuntos
Ração Animal , Bactérias , Carpas , Proteínas Alimentares , Microbioma Gastrointestinal , RNA Ribossômico 16S , Animais , Carpas/microbiologia , Carpas/crescimento & desenvolvimento , Ração Animal/análise , RNA Ribossômico 16S/genética , Proteínas Alimentares/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Glutamato Desidrogenase/metabolismo , Glutamato Desidrogenase/genética , Nitrogênio/metabolismo , Fígado/metabolismo , Filogenia , Dieta/veterinária
14.
Sci Adv ; 10(23): eadl3587, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38848370

RESUMO

Heterotrophic nitrifiers continue to be a hiatus in our understanding of the nitrogen cycle. Despite their discovery over 50 years ago, the physiology and environmental role of this enigmatic group remain elusive. The current theory is that heterotrophic nitrifiers are capable of converting ammonia to hydroxylamine, nitrite, nitric oxide, nitrous oxide, and dinitrogen gas via the subsequent actions of nitrification and denitrification. In addition, it was recently suggested that dinitrogen gas may be formed directly from ammonium. Here, we combine complementary high-resolution gas profiles, 15N isotope labeling studies, and transcriptomics data to show that hydroxylamine is the major product of nitrification in Alcaligenes faecalis. We demonstrated that denitrification and direct ammonium oxidation to dinitrogen gas did not occur under the conditions tested. Our results indicate that A. faecalis is capable of hydroxylamine production from an organic intermediate. These results fundamentally change our understanding of heterotrophic nitrification and have important implications for its biotechnological application.


Assuntos
Alcaligenes faecalis , Processos Heterotróficos , Hidroxilamina , Nitrificação , Alcaligenes faecalis/metabolismo , Alcaligenes faecalis/genética , Hidroxilamina/metabolismo , Compostos de Amônio/metabolismo , Nitritos/metabolismo , Oxirredução
15.
Sci Total Environ ; 896: 165212, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37391154

RESUMO

Recirculating aquaculture systems (RAS) are increasingly being used to grow fish, as intensive water reuse reduces water consumption and environmental impact. RAS use biofilters containing nitrogen-cycling microorganisms that remove ammonia from the aquaculture water. Knowledge of how RAS microbial communities relate to the fish-associated microbiome is limited, as is knowledge of fish-associated microbiota in general. Recently, nitrogen-cycling bacteria have been discovered in zebrafish and carp gills and shown to detoxify ammonia in a manner similar to the RAS biofilter. Here, we compared RAS water and biofilter microbiomes with fish-associated gut and gill microbial communities in laboratory RAS housing either zebrafish (Danio rerio) or common carp (Cyprinus carpio) using 16S rRNA gene amplicon sequencing. The phylogeny of ammonia-oxidizing bacteria in the gills and the RAS environment was investigated in more detail by phylogenetic analysis of the ammonia monooxygenase subunit A (amoA). The location from which the microbiome was sampled (RAS compartments and gills or gut) had a stronger effect on community composition than the fish species, but species-specific differences were also observed. We found that carp- and zebrafish-associated microbiomes were highly distinct from their respective RAS microbiomes, characterized by lower overall diversity and a small core microbiome consisting of taxa specifically adapted to the respective organ. The gill microbiome was also defined by a high proportion of unique taxa. Finally, we found that amoA sequences from the gills were distinct from those from the RAS biofilter and water. Our results showed that the gut and gill microbiomes of carp and zebrafish share a common and species-specific core microbiome that is distinct from the microbially-rich RAS environment.


Assuntos
Carpas , Microbioma Gastrointestinal , Microbiota , Animais , Microbioma Gastrointestinal/genética , Peixe-Zebra/genética , Brânquias , Filogenia , RNA Ribossômico 16S/genética , Amônia , Aquicultura , Água , Nitrogênio
16.
Front Physiol ; 14: 1111404, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36824463

RESUMO

Ammonia accumulation is a major challenge in intensive aquaculture, where fish are fed protein-rich diets in large rations, resulting in increased ammonia production when amino acids are metabolized as energy source. Ammonia is primarily excreted via the gills, which have been found to harbor nitrogen-cycle bacteria that convert ammonia into dinitrogen gas (N2) and therefore present a potential in situ detoxifying mechanism. Here, we determined the impact of feeding strategies (demand-feeding and batch-feeding) with two dietary protein levels on growth, nitrogen excretion, and nitrogen metabolism in common carp (Cyprinus carpio, L.) in a 3-week feeding experiment. Demand-fed fish exhibited significantly higher growth rates, though with lower feed efficiency. When corrected for feed intake, nitrogen excretion was not impacted by feeding strategy or dietary protein, but demand-fed fish had significantly more nitrogen unaccounted for in the nitrogen balance and less retained nitrogen. N2 production of individual fish was measured in all experimental groups, and production rates were in the same order of magnitude as the amount of nitrogen unaccounted for, thus potentially explaining the missing nitrogen in the balance. N2 production by carp was also observed when groups of fish were kept in metabolic chambers. Demand feeding furthermore caused a significant increase in hepatic glutamate dehydrogenase activities, indicating elevated ammonia production. However, branchial ammonia transporter expression levels in these animals were stable or decreased. Together, our results suggest that feeding strategy impacts fish growth and nitrogen metabolism, and that conversion of ammonia to N2 by nitrogen cycle bacteria in the gills may explain the unaccounted nitrogen in the balance.

17.
Water Res ; 242: 120184, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37429136

RESUMO

Rapid sand filtration is a common method for removal of iron (Fe), manganese (Mn) and ammonium (NH4+) from anoxic groundwaters used for drinking water production. In this study, we combine geochemical and microbiological data to assess how filter age influences Fe, Mn and NH4+ removal in dual media filters, consisting of anthracite overlying quartz sand, that have been in operation for between ∼2 months and ∼11 years. We show that the depth where dissolved Fe and Mn removal occurs is reflected in the filter medium coatings, with ferrihydrite forming in the anthracite in the top of the filters (< 1 m), while birnessite-type Mn oxides are mostly formed in the sand (> 1 m). Removal of NH4+ occurs through nitrification in both the anthracite and sand and is the key driver of oxygen loss. Removal of Fe is independent of filter age and is always efficient (> 97% removal). In contrast, for Mn, the removal efficiency varies with filter age, ranging from 9 to 28% at ∼2-3 months after filter replacement to 100% after 8 months. After 11 years, removal reduces to 60-80%. The lack of Mn removal in the youngest filters (at 2-3 months) is likely the result of a relatively low abundance of mineral coatings that adsorb Mn2+ and provide surfaces for the establishment of a microbial community. 16S rRNA gene amplicon sequencing shows that Gallionella, which are known Fe2+ oxidizers, are present after 2 months, yet Fe2+ removal is mostly chemical. Efficient NH4+ removal (> 90%) establishes within 3 months of operation but leakage occurs upon high NH4+loading (> 160 µM). Two-step nitrification by Nitrosomonas and Candidatus Nitrotoga is likely the most important NH4+ removal mechanism in younger filters during ripening (2 months), after which complete ammonia oxidation by Nitrospira and canonical two-step nitrification occur simultaneously in older filters. Our results highlight the strong effect of filter age on especially Mn2+but also NH4+ removal. We show that ageing of filter medium leads to the development of thick coatings, which we hypothesize leads to preferential flow, and breakthrough of Mn2+. Use of age-specific flow rates may increase the contact time with the filter medium in older filters and improve Mn2+ and NH4+ removal.

18.
ISME J ; 16(4): 958-971, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34743174

RESUMO

The advance of metagenomics in combination with intricate cultivation approaches has facilitated the discovery of novel ammonia-, methane-, and other short-chain alkane-oxidizing microorganisms, indicating that our understanding of the microbial biodiversity within the biogeochemical nitrogen and carbon cycles still is incomplete. The in situ detection and phylogenetic identification of novel ammonia- and alkane-oxidizing bacteria remain challenging due to their naturally low abundances and difficulties in obtaining new isolates from complex samples. Here, we describe an activity-based protein profiling protocol allowing cultivation-independent unveiling of ammonia- and alkane-oxidizing bacteria. In this protocol, 1,7-octadiyne is used as a bifunctional enzyme probe that, in combination with a highly specific alkyne-azide cycloaddition reaction, enables the fluorescent or biotin labeling of cells harboring active ammonia and alkane monooxygenases. Biotinylation of these enzymes in combination with immunogold labeling revealed the subcellular localization of the tagged proteins, which corroborated expected enzyme targets in model strains. In addition, fluorescent labeling of cells harboring active ammonia or alkane monooxygenases provided a direct link of these functional lifestyles to phylogenetic identification when combined with fluorescence in situ hybridization. Furthermore, we show that this activity-based labeling protocol can be successfully coupled with fluorescence-activated cell sorting for the enrichment of nitrifiers and alkane-oxidizing bacteria from complex environmental samples, enabling the recovery of high-quality metagenome-assembled genomes. In conclusion, this study demonstrates a novel, functional tagging technique for the reliable detection, identification, and enrichment of ammonia- and alkane-oxidizing bacteria present in complex microbial communities.


Assuntos
Alcanos , Amônia , Alcanos/metabolismo , Amônia/metabolismo , Archaea/genética , Bactérias , Hibridização in Situ Fluorescente , Oxigenases de Função Mista/metabolismo , Oxirredução , Filogenia
19.
Biochem Soc Trans ; 39(6): 1817-21, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22103532

RESUMO

Strict environmental restrictions force the aquaculture industry to guarantee optimal water quality for fish production in a sustainable manner. The implementation of anammox (anaerobic ammonium oxidation) in biofilters would result in the conversion of both ammonium and nitrite (both toxic to aquatic animals) into harmless dinitrogen gas. Both marine and freshwater aquaculture systems contain populations of anammox bacteria. These bacteria are also present in the faeces of freshwater and marine fish. Interestingly, a new planctomycete species appears to be present in these recirculation systems too. Further exploitation of anammox bacteria in different compartments of aquaculture systems can lead to a more environmentally friendly aquaculture practice.


Assuntos
Aquicultura/métodos , Bactérias Anaeróbias/metabolismo , Compostos de Amônio Quaternário/metabolismo , Animais , Filtração , Oxirredução , Resíduos
20.
ISME J ; 15(4): 1010-1024, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33188298

RESUMO

The recent discovery of bacteria within the genus Nitrospira capable of complete ammonia oxidation (comammox) demonstrated that the sequential oxidation of ammonia to nitrate via nitrite can also be performed within a single bacterial cell. Although comammox Nitrospira exhibit a wide distribution in natural and engineered ecosystems, information on their physiological properties is scarce due to the limited number of cultured representatives. Additionally, most available genomic information is derived from metagenomic sequencing and high-quality genomes of Nitrospira in general are limited. In this study, we obtained a high (90%) enrichment of a novel comammox species, tentatively named "Candidatus Nitrospira kreftii", and performed a detailed genomic and physiological characterization. The complete genome of "Ca. N. kreftii" allowed reconstruction of its basic metabolic traits. Similar to Nitrospira inopinata, the enrichment culture exhibited a very high ammonia affinity (Km(app)_NH3 ≈ 0.040 ± 0.01 µM), but a higher nitrite affinity (Km(app)_NO2- = 12.5 ± 4.0 µM), indicating an adaptation to highly oligotrophic environments. Furthermore, we observed partial inhibition of ammonia oxidation at ammonium concentrations as low as 25 µM. This inhibition of "Ca. N. kreftii" indicates that differences in ammonium tolerance rather than affinity could potentially be a niche determining factor for different comammox Nitrospira.


Assuntos
Compostos de Amônio , Nitrificação , Amônia , Bactérias/genética , Ecossistema , Nitritos , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA