Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 12(3)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38543928

RESUMO

Human respiratory syncytial virus (RSV) poses a significant human health threat, particularly to infants and the elderly. While efficacious vaccines based on the F protein have recently received market authorization, uncertainties remain regarding the future need for vaccine updates to counteract potential viral drift. The attachment protein G has long been ignored as a vaccine target due to perceived non-essentiality and ineffective neutralization on immortalized cells. Here, we show strong G-based neutralization in fully differentiated human airway epithelial cell (hAEC) cultures that is comparable to F-based neutralization. Next, we designed an RSV vaccine component based on the central conserved domain (CCD) of G fused to self-assembling lumazine synthase (LS) nanoparticles from the thermophile Aquifex aeolicus as a multivalent antigen presentation scaffold. These nanoparticles, characterized by high particle expression and assembly through the introduction of N-linked glycans, showed exceptional thermal and storage stability and elicited potent RSV neutralizing antibodies in a mouse model. In conclusion, our results emphasize the pivotal role of RSV G in the viral lifecycle and culminate in a promising next-generation RSV vaccine candidate characterized by excellent manufacturability and immunogenic properties. This candidate could function independently or synergistically with current F-based vaccines.

2.
Nat Commun ; 15(1): 4629, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821950

RESUMO

The Paramyxoviridae family encompasses medically significant RNA viruses, including human respiroviruses 1 and 3 (RV1, RV3), and zoonotic pathogens like Nipah virus (NiV). RV3, previously known as parainfluenza type 3, for which no vaccines or antivirals have been approved, causes respiratory tract infections in vulnerable populations. The RV3 fusion (F) protein is inherently metastable and will likely require prefusion (preF) stabilization for vaccine effectiveness. Here we used structure-based design to stabilize regions involved in structural transformation to generate a preF protein vaccine antigen with high expression and stability, and which, by stabilizing the coiled-coil stem region, does not require a heterologous trimerization domain. The preF candidate induces strong neutralizing antibody responses in both female naïve and pre-exposed mice and provides protection in a cotton rat challenge model (female). Despite the evolutionary distance of paramyxovirus F proteins, their structural transformation and local regions of instability are conserved, which allows successful transfer of stabilizing substitutions to the distant preF proteins of RV1 and NiV. This work presents a successful vaccine antigen design for RV3 and provides a toolbox for future paramyxovirus vaccine design and pandemic preparedness.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Sigmodontinae , Proteínas Virais de Fusão , Vacinas Virais , Animais , Feminino , Proteínas Virais de Fusão/imunologia , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/química , Camundongos , Vacinas Virais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Humanos , Camundongos Endogâmicos BALB C , Infecções por Paramyxoviridae/prevenção & controle , Infecções por Paramyxoviridae/imunologia , Infecções por Paramyxoviridae/virologia , Vírus da Parainfluenza 3 Humana/imunologia , Vírus da Parainfluenza 3 Humana/genética
3.
Nat Commun ; 15(1): 5458, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937429

RESUMO

Respirovirus 3 is a leading cause of severe acute respiratory infections in vulnerable human populations. Entry into host cells is facilitated by the attachment glycoprotein and the fusion glycoprotein (F). Because of its crucial role, F represents an attractive therapeutic target. Here, we identify 13 F-directed heavy-chain-only antibody fragments that neutralize recombinant respirovirus 3. High-resolution cryo-EM structures of antibody fragments bound to the prefusion conformation of F reveal three distinct, previously uncharacterized epitopes. All three antibody fragments bind quaternary epitopes on F, suggesting mechanisms for neutralization that may include stabilization of the prefusion conformation. Studies in cotton rats demonstrate the prophylactic efficacy of these antibody fragments in reducing viral load in the lungs and nasal passages. These data highlight the potential of heavy-chain-only antibody fragments as effective interventions against respirovirus 3 infection and identify neutralizing epitopes that can be targeted for therapeutic development.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Microscopia Crioeletrônica , Epitopos , Animais , Anticorpos Neutralizantes/imunologia , Humanos , Anticorpos Antivirais/imunologia , Epitopos/imunologia , Sigmodontinae , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/química , Proteínas Virais de Fusão/imunologia , Proteínas Virais de Fusão/química , Feminino , Camelus/imunologia , Camelus/virologia
4.
PNAS Nexus ; 3(10): pgae462, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39445049

RESUMO

Vaccine components based on viral fusion proteins require high stability of the native prefusion conformation for optimal potency and manufacturability. In the case of influenza B virus hemagglutinin (HA), the stem's conformation relies on efficient cleavage. In this study, we identified six pH-sensitive regions distributed across the entire ectodomain where protonated histidines assume either a repulsive or an attractive role. Substitutions in these areas enhanced the protein's expression, quality, and stability in its prefusion trimeric state. Importantly, this stabilization enabled the production of a cleavable HA0, which is further processed into HA1 and HA2 by furin during exocytic pathway passage, thereby facilitating correct folding, increased stability, and screening for additional stabilizing substitutions in the core of the metastable fusion domain. Cryo-EM analysis at neutral and low pH revealed a previously unnoticed pH switch involving the C-terminal residues of the natively cleaved HA1. This switch keeps the fusion peptide in a clamped state at neutral pH, averting premature conformational shift. Our findings shed light on new strategies for possible improvements of recombinant or genetic-based influenza B vaccines.

5.
Nat Commun ; 15(1): 6270, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39054318

RESUMO

The prefusion conformation of human metapneumovirus fusion protein (hMPV Pre-F) is critical for eliciting the most potent neutralizing antibodies and is the preferred immunogen for an efficacious vaccine against hMPV respiratory infections. Here we show that an additional cleavage event in the F protein allows closure and correct folding of the trimer. We therefore engineered the F protein to undergo double cleavage, which enabled screening for Pre-F stabilizing substitutions at the natively folded protomer interfaces. To identify these substitutions, we developed an AI convolutional classifier that successfully predicts complex polar interactions often overlooked by physics-based methods and visual inspection. The combination of additional processing, stabilization of interface regions and stabilization of the membrane-proximal stem, resulted in a Pre-F protein vaccine candidate without the need for a heterologous trimerization domain that exhibited high expression yields and thermostability. Cryo-EM analysis shows the complete ectodomain structure, including the stem, and a specific interaction of the newly identified cleaved C-terminus with the adjacent protomer. Importantly, the protein induces high and cross-neutralizing antibody responses resulting in near complete protection against hMPV challenge in cotton rats, making the highly stable, double-cleaved hMPV Pre-F trimer an attractive vaccine candidate.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Metapneumovirus , Proteínas Virais de Fusão , Vacinas Virais , Metapneumovirus/imunologia , Metapneumovirus/genética , Animais , Anticorpos Neutralizantes/imunologia , Humanos , Anticorpos Antivirais/imunologia , Proteínas Virais de Fusão/imunologia , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/genética , Vacinas Virais/imunologia , Infecções por Paramyxoviridae/prevenção & controle , Infecções por Paramyxoviridae/imunologia , Microscopia Crioeletrônica , Engenharia de Proteínas/métodos , Sigmodontinae , Feminino , Multimerização Proteica , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA