Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 85(18): 8700-7, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-23930710

RESUMO

Identification of natural compounds, especially secondary metabolites, has been hampered by the lack of easy to use and accessible reference databases. Nuclear magnetic resonance (NMR) spectroscopy is the most selective technique for identification of unknown metabolites. High quality (1)H NMR (proton nuclear magnetic resonance) spectra combined with elemental composition obtained from mass spectrometry (MS) are essential for the identification process. Here, we present MetIDB, a reference database of experimental and predicted (1)H NMR spectra of 6000 flavonoids. By incorporating the stereochemistry, intramolecular interactions, and solvent effects into the prediction model, chemical shifts and couplings were predicted with great accuracy. A user-friendly web-based interface for MetIDB has been established providing various interfaces to the data and data-mining possibilities. For each compound, additional information is available comprising compound annotation, a (1)H NMR spectrum, 2D and 3D structure with correct stereochemistry, and monoisotopic mass as well as links to other web resources. The combination of chemical formula and (1)H NMR chemical shifts proved to be very efficient in metabolite identification, especially for isobaric compounds. Using this database, the process of flavonoid identification can then be significantly shortened by avoiding repetitive elucidation of already described compounds.


Assuntos
Bases de Dados Factuais , Flavonoides/análise , Espectroscopia de Ressonância Magnética/métodos , Previsões , Hidrogênio
2.
Proteins ; 78(9): 2101-13, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20455266

RESUMO

Ten years of experience with molecular class-specific information systems (MCSIS) such as with the hand-curated G protein-coupled receptor database (GPCRDB) or the semiautomatically generated nuclear receptor database has made clear that a wide variety of questions can be answered when protein-related data from many different origins can be flexibly combined. MCSISes revolve around a multiple sequence alignment (MSA) that includes "all" available sequences from the entire superfamily, and it has been shown at many occasions that the quality of these alignments is the most crucial aspect of the MCSIS approach. We describe here a system called 3DM that can automatically build an entire MCSIS. 3DM bases the MSA on a multiple structure alignment, which implies that the availability of a large number of superfamily members with a known three-dimensional structure is a requirement for 3DM to succeed well. Thirteen MCSISes were constructed and placed on the Internet for examination. These systems have been instrumental in a large series of research projects related to enzyme activity or the understanding and engineering of specificity, protein stability engineering, DNA-diagnostics, drug design, and so forth.


Assuntos
Biologia Computacional/métodos , Engenharia de Proteínas/métodos , Proteínas/química , Análise de Sequência de Proteína , Proteínas de Bactérias/química , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Desenho de Fármacos , Estabilidade Enzimática , Humanos , Modelos Moleculares , Técnicas de Diagnóstico Molecular , Ligação Proteica , Proteínas/classificação , Proteínas/genética , Alinhamento de Sequência , Especificidade por Substrato
3.
Biol Direct ; 1: 8, 2006 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-16556314

RESUMO

BACKGROUND: Peroxisomes are ubiquitous eukaryotic organelles involved in various oxidative reactions. Their enzymatic content varies between species, but the presence of common protein import and organelle biogenesis systems support a single evolutionary origin. The precise scenario for this origin remains however to be established. The ability of peroxisomes to divide and import proteins post-translationally, just like mitochondria and chloroplasts, supports an endosymbiotic origin. However, this view has been challenged by recent discoveries that mutant, peroxisome-less cells restore peroxisomes upon introduction of the wild-type gene, and that peroxisomes are formed from the Endoplasmic Reticulum. The lack of a peroxisomal genome precludes the use of classical analyses, as those performed with mitochondria or chloroplasts, to settle the debate. We therefore conducted large-scale phylogenetic analyses of the yeast and rat peroxisomal proteomes. RESULTS: Our results show that most peroxisomal proteins (39-58%) are of eukaryotic origin, comprising all proteins involved in organelle biogenesis or maintenance. A significant fraction (13-18%), consisting mainly of enzymes, has an alpha-proteobacterial origin and appears to be the result of the recruitment of proteins originally targeted to mitochondria. Consistent with the findings that peroxisomes are formed in the Endoplasmic Reticulum, we find that the most universally conserved Peroxisome biogenesis and maintenance proteins are homologous to proteins from the Endoplasmic Reticulum Assisted Decay pathway. CONCLUSION: Altogether our results indicate that the peroxisome does not have an endosymbiotic origin and that its proteins were recruited from pools existing within the primitive eukaryote. Moreover the reconstruction of primitive peroxisomal proteomes suggests that ontogenetically as well as phylogenetically, peroxisomes stem from the Endoplasmic Reticulum. REVIEWERS: This article was reviewed by Arcady Mushegian, Gáspár Jékely and John Logsdon. OPEN PEER REVIEW: Reviewed by Arcady Mushegian, Gáspar Jékely and John Logsdon. For the full reviews, please go to the Reviewers' comments section.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA