Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurophysiol ; 130(3): 524-546, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37465872

RESUMO

Amplitude modulation (AM) is a common feature of natural sounds, including speech and animal vocalizations. Here, we used operant conditioning and in vivo electrophysiology to determine the AM detection threshold of mice as well as its underlying neuronal encoding. Mice were trained in a Go-NoGo task to detect the transition to AM within a noise stimulus designed to prevent the use of spectral side-bands or a change in intensity as alternative cues. Our results indicate that mice, compared with other species, detect high modulation frequencies up to 512 Hz well, but show much poorer performance at low frequencies. Our in vivo multielectrode recordings in the inferior colliculus (IC) of both anesthetized and awake mice revealed a few single units with remarkable phase-locking ability to 512 Hz modulation, but not sufficient to explain the good behavioral detection at that frequency. Using a model of the population response that combined dimensionality reduction with threshold detection, we reproduced the general band-pass characteristics of behavioral detection based on a subset of neurons showing the largest firing rate change (both increase and decrease) in response to AM, suggesting that these neurons are instrumental in the behavioral detection of AM stimuli by the mice.NEW & NOTEWORTHY The amplitude of natural sounds, including speech and animal vocalizations, often shows characteristic modulations. We examined the relationship between neuronal responses in the mouse inferior colliculus and the behavioral detection of amplitude modulation (AM) in sound and modeled how the former can give rise to the latter. Our model suggests that behavioral detection can be well explained by the activity of a subset of neurons showing the largest firing rate changes in response to AM.


Assuntos
Colículos Inferiores , Animais , Camundongos , Colículos Inferiores/fisiologia , Estimulação Acústica , Som , Ruído , Neurônios/fisiologia
2.
iScience ; 27(5): 109691, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38736549

RESUMO

Salicylate is commonly used to induce tinnitus in animals, but its underlying mechanism of action is still debated. We therefore tested its effects on the firing properties of neurons in the mouse inferior colliculus (IC). Salicylate induced a large decrease in the spontaneous activity and an increase of ∼20 dB SPL in the minimum threshold of single units. In response to sinusoidally modulated noise (SAM noise) single units showed both an increase in phase locking and improved rate coding. Mice also became better at detecting amplitude modulations, and a simple threshold model based on the IC population response could reproduce this improvement. The responses to dynamic random chords (DRCs) suggested that the improved AM encoding was due to a linearization of the cochlear output, resulting in larger contrasts during SAM noise. These effects of salicylate are not consistent with the presence of tinnitus, but should be taken into account when studying hyperacusis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA