Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Biochim Biophys Acta Mol Cell Res ; 1864(4): 655-665, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28093214

RESUMO

Neurons are highly dependent on glucose. A disturbance in glucose homeostasis therefore poses a severe risk that is counteracted by activation of stress responses to limit damage and restore the energy balance. A major stress response that is activated under conditions of glucose deprivation is the unfolded protein response (UPR) that is aimed to restore proteostasis in the endoplasmic reticulum. The key signaling of the UPR involves the transient activation of a transcriptional program and an overall reduction of protein synthesis. Since the UPR is strategically positioned to sense and integrate metabolic stress signals, it is likely that - apart from its adaptive response to restore proteostasis - it also directly affects metabolic pathways. Here we investigate the direct role of the UPR in glucose homeostasis. O-GlcNAc is a post-translational modification that is highly responsive to glucose fluctuations. We find that UPR activation results in decreased O-GlcNAc modification, in line with reduced glucose metabolism. Our data indicate that UPR activation has no direct impact on the upstream processes in glucose metabolism; glucose transporter expression, glucose uptake and hexokinase activity. In contrast, prolonged UPR activation decreases glycolysis and mitochondrial metabolism. Decreased mitochondrial respiration is not accompanied by apoptosis or a structural change in mitochondria indicating that the reduction in metabolic rate upon UPR activation is a physiological non-apoptotic response. Metabolic decrease is prevented if the IRE1 pathway of the UPR is inhibited. This indicates that activation of IRE1 signaling induces a reduction in glucose metabolism, as part of an adaptive response.


Assuntos
Acetilglucosamina/metabolismo , Endorribonucleases/genética , Glucose/deficiência , Neurônios/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/genética , Resposta a Proteínas não Dobradas , Adaptação Fisiológica , Transporte Biológico , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/genética , Endorribonucleases/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Glicólise/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Hexoquinase/genética , Hexoquinase/metabolismo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Neurônios/citologia , Fosforilação Oxidativa , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Ativação Transcricional
2.
Neurobiol Dis ; 103: 163-173, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28400135

RESUMO

Alzheimer's disease (AD) is a highly prevalent multifactorial disease for which Diabetes Mellitus (DM) is a risk factor. Abnormal phosphorylation and aggregation of tau is a key hallmark of AD. In animal models, DM induces or exacerbates the phosphorylation of tau, suggesting that DM may influence the risk at AD by directly facilitating tau pathology. Previously we reported that tau phosphorylation induced in response to metabolic stress is reversible. Since identification and understanding of early players in tau pathology is pivotal for therapeutic intervention, we here investigated the mechanism underlying tau phosphorylation in the diabetic brain and its potential for reversibility. To model DM we used streptozotocin-treatment to induce insulin deficiency in rats. Insulin depletion leads to increased tau phosphorylation in the brain and we investigated the activation status of known tau kinases and phosphatases in this model. We identified protein kinase A (PKA) as a tau kinase activated by DM in the brain. The potential relevance of this signaling pathway to AD pathogenesis is indicated by the increased level of active PKA in temporal cortex of early stage AD patients. Our data indicate that activation of PKA and tau phosphorylation are associated with insulin deficiency per se, rather than the downstream energy deprivation. In vitro studies confirm that insulin deficiency results in PKA activation and tau phosphorylation. Strikingly, both active PKA and induced tau phosphorylation are reversed upon insulin treatment in the steptozotocin animal model. Our data identify insulin deficiency as a direct trigger that induces the activity of the tau kinase PKA and results in tau phosphorylation. The reversibility upon insulin treatment underscores the potential of insulin as an early disease-modifying intervention in AD and other tauopathies.


Assuntos
Encéfalo/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Insulina/deficiência , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Encéfalo/patologia , Linhagem Celular Tumoral , Ativação Enzimática/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fosforilação/fisiologia , Ratos , Ratos Wistar
3.
Cereb Cortex ; 23(3): 647-59, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22414771

RESUMO

Subventricular zone (SVZ) astrocytes and ependymal cells are both derived from radial glia and may have similar gliotic reactions after stroke. Diminishing SVZ neurogenesis worsens outcomes in mice, yet the effects of stroke on SVZ astrocytes and ependymal cells are poorly understood. We used mouse experimental stroke to determine if SVZ astrocytes and ependymal cells assume similar phenotypes and if stroke impacts their functions. Using lateral ventricular wall whole mount preparations, we show that stroke caused SVZ reactive astrocytosis, disrupting the neuroblast migratory scaffold. Also, SVZ vascular density and neural proliferation increased but apoptosis did not. In contrast to other reports, ependymal denudation and cell division was never observed. Remarkably, however, ependymal cells assumed features of reactive astrocytes post stroke, robustly expressing de novo glial fibrillary acidic protein, enlargening and extending long processes. Unexpectedly, stroke disrupted motile cilia planar cell polarity in ependymal cells. This suggested ciliary function was affected and indeed ventricular surface flow was slower and more turbulent post stroke. Together, these results demonstrate that in response to stroke there is significant SVZ reorganization with implications for both pathophysiology and therapeutic strategies.


Assuntos
Cílios/patologia , Epêndima/patologia , Gliose/patologia , Ventrículos Laterais/patologia , Acidente Vascular Cerebral/patologia , Animais , Modelos Animais de Doenças , Epêndima/fisiopatologia , Imuno-Histoquímica , Ventrículos Laterais/fisiopatologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Acidente Vascular Cerebral/líquido cefalorraquidiano , Acidente Vascular Cerebral/fisiopatologia
4.
J Cell Sci ; 124(Pt 14): 2438-47, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21693585

RESUMO

The adult brain subventricular zone (SVZ) produces neuroblasts that migrate through the rostral migratory stream (RMS) to the olfactory bulb (OB) in a specialized niche. Galectin-3 (Gal-3) regulates proliferation and migration in cancer and is expressed by activated macrophages after brain injury. The function of Gal-3 in the normal brain is unknown, but we serendipitously found that it was expressed by ependymal cells and SVZ astrocytes in uninjured mice. Ependymal cilia establish chemotactic gradients and astrocytes form glial tubes, which combine to aid neuroblast migration. Whole-mount preparations and electron microscopy revealed that both ependymal cilia and SVZ astrocytes were disrupted in Gal3(-/-) mice. Interestingly, far fewer new BrdU(+) neurons were found in the OB of Gal3(-/-) mice, than in wild-type mice 2 weeks after labeling. However, SVZ proliferation and cell death, as well as OB differentiation rates were unaltered. This suggested that decreased migration in vivo was sufficient to decrease the number of new OB neurons. Two-photon time-lapse microscopy in forebrain slices confirmed decreased migration; cells were slower and more exploratory in Gal3(-/-) mice. Gal-3 blocking antibodies decreased migration and dissociated neuroblast cell-cell contacts, whereas recombinant Gal-3 increased migration from explants. Finally, we showed that expression of phosphorylated epidermal growth factor receptor (EGFR) was increased in Gal3(-/-) mice. These results suggest that Gal-3 is important in SVZ neuroblast migration, possibly through an EGFR-based mechanism, and reveals a role for this lectin in the uninjured brain.


Assuntos
Movimento Celular/fisiologia , Galectina 3/metabolismo , Ventrículos Laterais/citologia , Bulbo Olfatório/citologia , Animais , Diferenciação Celular/fisiologia , Galectina 3/deficiência , Ventrículos Laterais/metabolismo , Camundongos , Camundongos Transgênicos , Microglia/citologia , Microglia/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Bulbo Olfatório/metabolismo
5.
Front Neurosci ; 9: 432, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26617484

RESUMO

Abnormal phosphorylation and aggregation of tau is a key hallmark of Alzheimer's disease (AD). AD is a multifactorial neurodegenerative disorder for which Diabetes Mellitus (DM) is a risk factor. In animal models for DM, the phosphorylation and aggregation of tau is induced or exacerbated, however the underlying mechanism is unknown. In addition to the metabolic dysfunction, DM is characterized by chronic low-grade inflammation. This was reported to be associated with a neuroinflammatory response in the hypothalamus of DM animal models. Neuroinflammation is also implicated in the development and progression of AD. It is unknown whether DM also induces neuroinflammation in brain areas affected in AD, the cortex and hippocampus. Here we investigated whether neuroinflammation could be the mechanistic trigger to induce tau phosphorylation in the brain of DM animals. Two distinct diabetic animal models were used; rats on free-choice high-fat high-sugar (fcHFHS) diet that are insulin resistant and streptozotocin-treated rats that are insulin deficient. The streptozotocin-treated animals demonstrated increased tau phosphorylation in the brain as expected, whereas the fcHFHS diet fed animals did not. Remarkably, neither of the diabetic animal models showed reactive microglia or increased GFAP and COX-2 levels in the cortex or hippocampus. From this, we conclude: 1. DM does not induce neuroinflammation in brain regions affected in AD, and 2. Neuroinflammation is not a prerequisite for tau phosphorylation. Neuroinflammation is therefore not the mechanism that explains the close connection between DM and AD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA