RESUMO
O-GlcNAc is a dynamic post-translational modification (PTM) that regulates protein functions. In studying the regulatory roles of O-GlcNAc, a major roadblock is the inability to change O-GlcNAcylation on a single protein at a time. Herein, we developed a dual RNA-aptamer-based approach that simultaneously targeted O-GlcNAc transferase (OGT) and ß-catenin, the key transcription factor of the Wnt signaling pathway, to selectively increase O-GlcNAcylation of the latter without affecting other OGT substrates. Using the OGT/ß-catenin dual-specificity aptamers, we found that O-GlcNAcylation of ß-catenin stabilizes the protein by inhibiting its interaction with ß-TrCP. O-GlcNAc also increases ß-catenin's interaction with EZH2, recruits EZH2 to promoters, and dramatically alters the transcriptome. Further, by coupling riboswitches or an inducible expression system to aptamers, we enabled inducible regulation of protein-specific O-GlcNAcylation. Together, our findings demonstrate the efficacy and versatility of dual-specificity aptamers for regulating O-GlcNAcylation on individual proteins.
Assuntos
Aptâmeros de Nucleotídeos , beta Catenina/metabolismo , Processamento de Proteína Pós-Traducional , Via de Sinalização Wnt , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Acetilglucosamina/metabolismoRESUMO
The Wnt pathway is central to a host of developmental and disease-related processes. The remarkable conservation of this intercellular signaling cascade throughout metazoan lineages indicates that it coevolved with multicellularity to regulate the generation and spatial arrangement of distinct cell types. By regulating cell fate specification, mitotic activity, and cell polarity, Wnt signaling orchestrates development and tissue homeostasis, and its dysregulation is implicated in developmental defects, cancer, and degenerative disorders. We review advances in our understanding of this key pathway, from Wnt protein production and secretion to relay of the signal in the cytoplasm of the receiving cell. We discuss the evolutionary history of this pathway as well as endogenous and synthetic modulators of its activity. Finally, we highlight remaining gaps in our knowledge of Wnt signal transduction and avenues for future research.
Assuntos
Neoplasias , Via de Sinalização Wnt , Animais , Diferenciação Celular , Neoplasias/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismoRESUMO
Tissue macrophages self-renew during homeostasis and produce inflammatory mediators upon microbial infection. We examined the relationship between proliferative and inflammatory properties of tissue macrophages by defining the impact of the Wnt/ß-catenin pathway, a central regulator of self-renewal, in alveolar macrophages (AMs). Activation of ß-catenin by Wnt ligand inhibited AM proliferation and stemness, but promoted inflammatory activity. In a murine influenza viral pneumonia model, ß-catenin-mediated AM inflammatory activity promoted acute host morbidity; in contrast, AM proliferation enabled repopulation of reparative AMs and tissue recovery following viral clearance. Mechanistically, Wnt treatment promoted ß-catenin-HIF-1α interaction and glycolysis-dependent inflammation while suppressing mitochondrial metabolism and thereby, AM proliferation. Differential HIF-1α activities distinguished proliferative and inflammatory AMs in vivo. This ß-catenin-HIF-1α axis was conserved in human AMs and enhanced HIF-1α expression associated with macrophage inflammation in COVID-19 patients. Thus, inflammatory and reparative activities of lung macrophages are regulated by ß-catenin-HIF-1α signaling, with implications for the treatment of severe respiratory diseases.
Assuntos
COVID-19/imunologia , COVID-19/virologia , Autorrenovação Celular/imunologia , Interações Hospedeiro-Patógeno/imunologia , Macrófagos/imunologia , SARS-CoV-2/imunologia , Biomarcadores , COVID-19/metabolismo , Citocinas/metabolismo , Suscetibilidade a Doenças/imunologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Mediadores da Inflamação/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Transdução de SinaisRESUMO
Visualization of protein dynamics is a crucial step in understanding cellular processes. Chromobodies, fluorescently labelled single-domain antibodies, have emerged as versatile probes for live cell imaging of endogenous proteins. However, how these chromobodies behave in vivo and how accurately they monitor tissue changes remain poorly explored. Here, we generated an endothelial-specific ß-catenin chromobody-derived probe and analyzed its expression pattern during cardiovascular development in zebrafish. Using high-resolution confocal imaging, we show that the chromobody signal correlates with the localization of ß-catenin in the nucleus and at cell-cell junctions, and thereby can be used to assess endothelial maturation. Loss of Cadherin 5 strongly affects the localization of the chromobody at the cell membrane, confirming the cadherin-based adherens junction role of ß-catenin. Furthermore, using a genetic model to block blood flow, we observed that cell junctions are compromised in most endothelial cells but not in the endocardium, highlighting the heterogeneous response of the endothelium to the lack of blood flow. Overall, our data further expand the use of chromobodies for in vivo applications and illustrate their potential to monitor tissue morphogenesis at high resolution.
Assuntos
Caderinas , Morfogênese , Proteínas de Peixe-Zebra , Peixe-Zebra , beta Catenina , Animais , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , beta Catenina/metabolismo , Caderinas/metabolismo , Caderinas/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Junções Aderentes/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Endotélio Vascular/metabolismo , Endotélio Vascular/citologia , Antígenos CDRESUMO
In the developing mammalian kidney, nephron formation is initiated by a subset of nephron progenitor cells (NPCs). Wnt input activates a ß-catenin (Ctnnb1)-driven, transcriptional nephrogenic program and the mesenchymal to epithelial transition (MET) of NPCs. Using an in vitro mouse NPC culture model, we observed that activation of the Wnt pathway results in the aggregation of induced NPCs, which is an initiating step in the MET program. Genetic removal showed aggregation was dependent on ß-catenin. Modulating extracellular Ca2+ levels showed cell-cell contacts were Ca2+ dependent, suggesting a role for cadherin (Cdh)-directed cell adhesion. Molecular analysis identified Cdh2, Cdh4 and Cdh11 in NPCs, and the ß-catenin directed upregulation of Cdh3 and Cdh4 accompanying the MET of induced NPCs. Mutational analysis of ß-catenin supported a role for a Lef/Tcf-ß-catenin-mediated transcriptional response in the cell aggregation process. Genetic removal of all four cadherins, and independent removal of α-catenin or of ß-catenin-α-catenin interactions, abolished aggregation, but not the inductive response to Wnt pathway activation. These findings, and data in an accompanying article highlight the role of ß-catenin in linking transcriptional programs to the morphogenesis of NPCs in mammalian nephrogenesis.
Assuntos
Caderinas , Agregação Celular , Transição Epitelial-Mesenquimal , Néfrons , Células-Tronco , Via de Sinalização Wnt , beta Catenina , Animais , Caderinas/metabolismo , Caderinas/genética , Néfrons/metabolismo , Néfrons/citologia , Células-Tronco/metabolismo , Células-Tronco/citologia , beta Catenina/metabolismo , beta Catenina/genética , Camundongos , Transição Epitelial-Mesenquimal/genética , Adesão Celular , Proteínas Wnt/metabolismo , Proteínas Wnt/genética , Células CultivadasRESUMO
Despite recent advances, many cancers remain refractory to available immunotherapeutic strategies. Emerging evidence indicates that the tolerization of local dendritic cells (DCs) within the tumor microenvironment promotes immune evasion. Here, we have described a mechanism by which melanomas establish a site of immune privilege via a paracrine Wnt5a-ß-catenin-peroxisome proliferator-activated receptor-γ (PPAR-γ) signaling pathway that drives fatty acid oxidation (FAO) in DCs by upregulating the expression of the carnitine palmitoyltransferase-1A (CPT1A) fatty acid transporter. This FAO shift increased the protoporphyrin IX prosthetic group of indoleamine 2,3-dioxgenase-1 (IDO) while suppressing interleukin(IL)-6 and IL-12 cytokine expression, culminating in enhanced IDO activity and the generation of regulatory T cells. We demonstrated that blockade of this pathway augmented anti-melanoma immunity, enhanced the activity of anti-PD-1 antibody immunotherapy, and suppressed disease progression in a transgenic melanoma model. This work implicates a role for tumor-mediated metabolic reprogramming of local DCs in immune evasion and immunotherapy resistance.
Assuntos
Células Dendríticas/metabolismo , Melanoma/imunologia , Proteína Wnt-5a/metabolismo , beta Catenina/metabolismo , Animais , Linhagem Celular , Células Dendríticas/imunologia , Ensaio de Imunoadsorção Enzimática , Ácidos Graxos/metabolismo , Feminino , Citometria de Fluxo , Immunoblotting , Masculino , Melanoma/metabolismo , Camundongos , Camundongos Transgênicos , PPAR gama/metabolismo , Comunicação Parácrina/fisiologia , Reação em Cadeia da Polimerase , Transdução de Sinais/fisiologiaRESUMO
Xenopus embryos provide a favorable material to dissect the sequential steps that lead to dorsal-ventral (D-V) and anterior-posterior (A-P) cell differentiation. Here, we analyze the signaling pathways involved in this process using loss-of-function and gain-of-function approaches. The initial step was provided by Hwa, a transmembrane protein that robustly activates early ß-catenin signaling when microinjected into the ventral side of the embryo leading to complete twinned axes. The following step was the activation of Xenopus Nodal-related growth factors, which could rescue the depletion of ß-catenin and were themselves blocked by the extracellular Nodal antagonists Cerberus-Short and Lefty. During gastrulation, the Spemann-Mangold organizer secretes a cocktail of growth factor antagonists, of which the BMP antagonists Chordin and Noggin could rescue simultaneously D-V and A-P tissues in ß-catenin-depleted embryos. Surprisingly, this rescue occurred in the absence of any ß-catenin transcriptional activity as measured by ß-catenin activated Luciferase reporters. The Wnt antagonist Dickkopf (Dkk1) strongly synergized with the early Hwa signal by inhibiting late Wnt signals. Depletion of Sizzled (Szl), an antagonist of the Tolloid chordinase, was epistatic over the Hwa and Dkk1 synergy. BMP4 mRNA injection blocked Hwa-induced ectopic axes, and Dkk1 inhibited BMP signaling late, but not early, during gastrulation. Several unexpected findings were made, e.g., well-patterned complete embryonic axes are induced by Chordin or Nodal in ß-catenin knockdown embryos, dorsalization by Lithium chloride (LiCl) is mediated by Nodals, Dkk1 exerts its anteriorizing and dorsalizing effects by regulating late BMP signaling, and the Dkk1 phenotype requires Szl.
Assuntos
Padronização Corporal , Peptídeos e Proteínas de Sinalização Intercelular , Transdução de Sinais , Proteínas de Xenopus , beta Catenina , Animais , Padronização Corporal/genética , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/genética , beta Catenina/metabolismo , beta Catenina/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Xenopus laevis/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Gastrulação , Proteína Nodal/metabolismo , Proteína Nodal/genética , Embrião não Mamífero/metabolismo , Embrião não Mamífero/embriologia , Organizadores Embrionários/metabolismo , GlicoproteínasRESUMO
ß-catenin has influential roles affecting embryonic development, tissue homeostasis, and human diseases including cancer. Cellular ß-catenin levels are exquisitely controlled by a variety of regulatory mechanisms. In the course of exploring the functions of the Nek10 tyrosine kinase, we observed that deletion of Nek10 in lung adenocarcinoma cells resulted in dramatic stabilization of ß-catenin, suggestive of a Nek10 role in the control of ß-catenin turnover. Nek10-deficient cells exhibited diminished ability to form tumorspheres in suspension, grow in soft agar, and colonize mouse lung tissue following tail vein injection. Mechanistically, Nek10 associates with the Axin complex, responsible for ß-catenin degradation, where it phosphorylates ß-catenin at Tyr30, located within the regulatory region governing ß-catenin turnover. In the absence of Nek10 phosphorylation, GSK3-mediated phosphorylation of ß-catenin, a prerequisite for its turnover, is impaired. This represents a divergent function within the Nek family, whose other members are serine-threonine kinases involved in different elements of the centrosomal cycle, primary cilia function, and DNA damage responses.
Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Quinases Relacionadas a NIMA , beta Catenina , Animais , Humanos , Camundongos , Células A549 , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , beta Catenina/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Quinases Relacionadas a NIMA/metabolismo , Quinases Relacionadas a NIMA/genética , Fosforilação , Tirosina/metabolismoRESUMO
Pancreatic adenocarcinoma (PDA) is an aggressive disease driven by oncogenic KRAS and characterized by late diagnosis and therapeutic resistance. Here we show that deletion of the ataxia-telangiectasia group D-complementing (Atdc) gene, whose human homolog is up-regulated in the majority of pancreatic adenocarcinoma, completely prevents PDA development in the context of oncogenic KRAS. ATDC is required for KRAS-driven acinar-ductal metaplasia (ADM) and its progression to pancreatic intraepithelial neoplasia (PanIN). As a result, mice lacking ATDC are protected from developing PDA. Mechanistically, we show ATDC promotes ADM progression to PanIN through activation of ß-catenin signaling and subsequent SOX9 up-regulation. These results provide new insight into PDA initiation and reveal ATDC as a potential target for preventing early tumor-initiating events.
Assuntos
Carcinogênese , Carcinoma Ductal Pancreático/fisiopatologia , Neoplasias Pancreáticas/fisiopatologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Fatores de Transcrição/fisiologia , Células Acinares/metabolismo , Células Acinares/patologia , Animais , Carcinoma in Situ/patologia , Carcinoma in Situ/fisiopatologia , Carcinoma Ductal Pancreático/patologia , Transdiferenciação Celular , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Técnicas de Silenciamento de Genes , Humanos , Metaplasia , Camundongos , Camundongos Transgênicos , Ductos Pancreáticos/metabolismo , Ductos Pancreáticos/patologia , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , beta Catenina/metabolismoRESUMO
Ultraviolet (UV) rays prompt a natural response in epidermal cells, particularly within melanocytes. The changes in gene expression and related signaling pathways in melanocytes following exposure to UVR are still not entirely understood. Our findings reveal that UVB irradiation suppresses the expression of Dicer. This repression is intricately linked to the activation of the PI3K, RSK, and WNT/ß-catenin signaling pathways and is directly associated with transcriptional repression by ß-catenin. Notably, we have identified specific binding sites for the LEF/ß-catenin complex in the Dicer promoter. Collectively, these results emphasize the significance of the UV-induced pathway involving LEF/ß-catenin, which impacts Dicer expression. UV radiation also reduced the levels of specific miRNAs known to be important in the biology of melanocytes. This pathway holds potential importance in governing melanocyte physiology.
RESUMO
During neural circuit formation, axons navigate from one intermediate target to the next, until they reach their final target. At intermediate targets, axons switch from being attracted to being repelled by changing the guidance receptors on the growth cone surface. For smooth navigation of the intermediate target and the continuation of their journey, the switch in receptor expression has to be orchestrated in a precisely timed manner. As an alternative to changes in expression, receptor function could be regulated by phosphorylation of receptors or components of signaling pathways. We identified Cables1 as a linker between floor-plate exit of commissural axons, regulated by Slit/Robo signaling, and the rostral turn of post-crossing axons, regulated by Wnt/Frizzled signaling. Cables1 localizes ß-catenin, phosphorylated at tyrosine 489 by Abelson kinase, to the distal axon, which in turn is necessary for the correct navigation of post-crossing commissural axons in the developing chicken spinal cord.
Assuntos
Orientação de Axônios , Axônios , Orientação de Axônios/fisiologia , Axônios/metabolismo , Cones de Crescimento , Medula Espinal/metabolismo , Via de Sinalização Wnt , Animais , GalinhasRESUMO
Here, we show that, in the developing spinal cord, after the early Wnt-mediated Tcf transcription activation that confers dorsal identity to neural stem cells, neurogenesis redirects ß-catenin from the adherens junctions to the nucleus to stimulate Tcf-dependent transcription in a Wnt-independent manner. This new ß-catenin activity regulates genes implicated in several aspects of contralateral axon growth, including axon guidance and adhesion. Using live imaging of ex-vivo chick neural tube, we showed that the nuclear accumulation of ß-catenin and the rise in Tcf-dependent transcription both initiate before the dismantling of the adherens junctions and remain during the axon elongation process. Notably, we demonstrated that ß-catenin activity in post-mitotic cells depends on TCF7L2 and is central to spinal commissural axon growth. Together, our results reveal Wnt-independent Tcf/ß-catenin regulation of genes that control the growth and guidance of commissural axons in chick spinal cord.
Assuntos
Células-Tronco Neurais , beta Catenina , beta Catenina/metabolismo , Junções Aderentes/metabolismo , Transdução de Sinais/fisiologia , Neurogênese/genéticaRESUMO
Adenomatous polyposis coli (APC) and Axin are core components of the ß-catenin destruction complex. How APC's function is regulated and whether Wnt signaling influences the direct APC-Axin interaction to inhibit the ß-catenin destruction complex is not clear. Through a CRISPR screen of ß-catenin stability, we have identified ICAT, a polypeptide previously known to block ß-catenin-TCF interaction, as a natural inhibitor of APC. ICAT blocks ß-catenin-APC interaction and prevents ß-catenin-mediated APC-Axin interaction, enhancing stabilization of ß-catenin in cells harboring truncated APC or stimulated with Wnt, but not in cells deprived of a Wnt signal. Using ICAT as a tool to disengage ß-catenin-mediated APC-Axin interaction, we demonstrate that Wnt quickly inhibits the direct interaction between APC and Axin. Our study highlights an important scaffolding function of ß-catenin in the assembly of the destruction complex and suggests Wnt-inhibited APC-Axin interaction as a mechanism of Wnt-dependent inhibition of the destruction complex.
Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Domínios e Motivos de Interação entre Proteínas/genética , beta Catenina/genética , Proteínas Adaptadoras de Transdução de Sinal , Proteína da Polipose Adenomatosa do Colo/antagonistas & inibidores , Proteína Axina/genética , Humanos , Estabilidade Proteica , Proteína 1 Semelhante ao Fator 7 de Transcrição/genética , Via de Sinalização Wnt/genéticaRESUMO
ß-Catenin is a bifunctional molecule that is an effector of the wingless-related integration site (Wnt) signaling to control gene expression and contributes to the regulation of cytoskeleton and neurotransmitter vesicle trafficking. In its former role, ß-catenin binds transcription factor 7-like 2 (TCF7L2), which shows strong genetic associations with the pathogenesis of obesity and type-2 diabetes. Here, we sought to determine whether ß-catenin plays a role in the neuroendocrine regulation of body weight and glucose homeostasis. Bilateral injections of adeno-associated virus type-2 (AAV2)-mCherry-Cre were placed into the arcuate nucleus of adult male and female ß-catenin flox mice, to specifically delete ß-catenin expression in the mediobasal hypothalamus (MBH-ß-cat KO). Metabolic parameters were then monitored under conditions of low-fat (LFD) and high-fat diet (HFD). On LFD, MBH-ß-cat KO mice showed minimal metabolic disturbances, but on HFD, despite having only a small difference in weekly caloric intake, the MBH-ß-cat KO mice were significantly heavier than the control mice in both sexes (p < 0.05). This deficit seemed to be due to a failure to show an adaptive increase in energy expenditure seen in controls, which served to offset the increased calories by HFD. Both male and female MBH-ß-cat KO mice were highly glucose intolerant when on HFD and displayed a significant reduction in both leptin and insulin sensitivity compared with controls. This study highlights a critical role for ß-catenin in the hypothalamic circuits regulating body weight and glucose homeostasis and reveals potential mechanisms by which genetic variation in this pathway could impact on development of metabolic disease.
Assuntos
Diabetes Mellitus Tipo 2 , Dieta Hiperlipídica , Animais , Feminino , Masculino , Camundongos , beta Catenina/genética , beta Catenina/metabolismo , Peso Corporal/genética , Diabetes Mellitus Tipo 2/patologia , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/genética , Glucose/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismoRESUMO
During inner ear development, specification of sensory epithelia requires dynamic regulation of Fgf signaling. In zebrafish, high levels of Fgf are necessary and sufficient to specify the utricular/vestibular macula, whereas the saccular/auditory macula requires a discreet lower level of Fgf. Transcription factors Pax2a and Pax5 act downstream of Fgf to help specify utricular identity, loss of which leads to sporadic extrusion of hair cells from the utricular macula. The mechanism for utricular instability is not clear but is potentially related to reduced expression of cdh1/Ecad caused by disruption of pax2a. Here we find that utricular hair cells in pax2-/- and pax5-/- mutants gradually lose adhesive contact with the macula, leading to ejection of intact hair cells from either the basal or apical surface. The phenotype is far more severe in pax2a-/- mutants and is progressive, resulting in loss of large swaths of the utricular hair cells by 82 hpf. Instability is caused by elevated Fgf signaling in the utricle, as modest reduction of Fgf signaling with a low dose of SU5402 prevents hair cell loss in pax2a-/- mutants. Misexpression of cdh1/Ecad in pax2a-/- mutants partially rescues pax2a-/- mutants. Elevating ß-catenin levels by treatment with BIO, or misexpression of a mutant form of ß-catenin lacking transcriptional activity but retaining cell adhesion function, fully rescues pax2a-/- mutants. In contrast, Wnt signaling is not required for utricular stability. Thus, Pax2/5 factors serve to counteract the destabilizing effects of elevated Fgf signaling needed to specify utricular identity.
RESUMO
The metastasis suppressor, N-myc downstream regulated gene-1 (NDRG1), inhibits pro-oncogenic signaling in pancreatic cancer (PC). This investigation dissected a novel mechanism induced by NDRG1 on WNT/ß-catenin signaling in multiple PC cell types. NDRG1 overexpression decreased ß-catenin and downregulated glycogen synthase kinase-3ß (GSK-3ß) protein levels and its activation. However, ß-catenin phosphorylation at Ser33, Ser37, and Thr41 are classically induced by GSK-3ß was significantly increased after NDRG1 overexpression, suggesting a GSK-3ß-independent mechanism. Intriguingly, NDRG1 overexpression upregulated protein kinase Cα (PKCα), with PKCα silencing preventing ß-catenin phosphorylation at Ser33, Ser37, and Thr41, and decreasing ß-catenin expression. Further, NDRG1 and PKCα were demonstrated to associate, with PKCα stabilization occurring after NDRG1 overexpression. PKCα half-life increased from 1.5 ± 0.8 h (3) in control cells to 11.0 ± 2.5 h (3) after NDRG1 overexpression. Thus, NDRG1 overexpression leads to the association of NDRG1 with PKCα and PKCα stabilization, resulting in ß-catenin phosphorylation at Ser33, Ser37, and Thr41. The association between PKCα, NDRG1, and ß-catenin was identified, with the formation of a potential metabolon that promotes the latter ß-catenin phosphorylation. This anti-oncogenic activity of NDRG1 was multi-modal, with the above mechanism accompanied by the downregulation of the nucleo-cytoplasmic shuttling protein, p21-activated kinase 4 (PAK4), which is involved in ß-catenin nuclear translocation, inhibition of AKT phosphorylation (Ser473), and decreased ß-catenin phosphorylation at Ser552 that suppresses its transcriptional activity. These mechanisms of NDRG1 activity are important to dissect to understand the marked anti-cancer efficacy of NDRG1-inducing thiosemicarbazones that upregulate PKCα and inhibit WNT signaling.
Assuntos
Proteínas de Ciclo Celular , Peptídeos e Proteínas de Sinalização Intracelular , Proteína Quinase C-alfa , Via de Sinalização Wnt , beta Catenina , Humanos , beta Catenina/metabolismo , beta Catenina/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Fosforilação , Proteína Quinase C-alfa/metabolismo , Proteína Quinase C-alfa/genética , Estabilidade ProteicaRESUMO
Members of the casein kinase 1 (CK1) family are important regulators of multiple signaling pathways. CK1α is a well-known negative regulator of the Wnt/ß-catenin pathway, which promotes the degradation of ß-catenin via its phosphorylation of Ser45. In contrast, the closest paralog of CK1α, CK1α-like, is a poorly characterized kinase of unknown function. In this study, we show that the deletion of CK1α, but not CK1α-like, resulted in a strong activation of the Wnt/ß-catenin pathway. Wnt-3a treatment further enhanced the activation, which suggests there are at least two modes, a CK1α-dependent and Wnt-dependent, of ß-catenin regulation. Rescue experiments showed that only two out of ten naturally occurring splice CK1α/α-like variants were able to rescue the augmented Wnt/ß-catenin signaling caused by CK1α deficiency in cells. Importantly, the ability to phosphorylate ß-catenin on Ser45 in the in vitro kinase assay was required but not sufficient for such rescue. Our compound CK1α and GSK3α/ß KO models suggest that the additional nonredundant function of CK1α in the Wnt pathway beyond Ser45-ß-catenin phosphorylation includes Axin phosphorylation. Finally, we established NanoBRET assays for the three most common CK1α splice variants as well as CK1α-like. Target engagement data revealed comparable potency of known CK1α inhibitors for all CK1α variants but not for CK1α-like. In summary, our work brings important novel insights into the biology of CK1α, including evidence for the lack of redundancy with other CK1 kinases in the negative regulation of the Wnt/ß-catenin pathway at the level of ß-catenin and Axin.
Assuntos
Caseína Quinase Ialfa , Via de Sinalização Wnt , beta Catenina , Humanos , Processamento Alternativo , beta Catenina/metabolismo , beta Catenina/genética , Caseína Quinase Ialfa/metabolismo , Caseína Quinase Ialfa/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Células HEK293 , Fosforilação , Proteína Wnt3A/metabolismo , Proteína Wnt3A/genéticaRESUMO
BACKGROUND & AIMS: WNT signaling is central to spatial tissue arrangement and regulating stem cell activity, and it represents the hallmark of gastrointestinal cancers. Although its role in driving intestinal tumors is well characterized, WNT's role in gastric tumorigenesis remains elusive. METHODS: We have developed mouse models to control the specific expression of an oncogenic form of ß-catenin (CTNNB1) in combination with MYC activation in Lgr5+ cells of the gastric antrum. We used multiomics approaches applied in vivo and in organoid models to characterize their cooperation in driving gastric tumorigenesis. RESULTS: We report that constitutive ß-catenin stabilization in the stomach has negligible oncogenic effects and requires MYC activation to induce gastric tumor formation. Although physiologically low MYC levels in gastric glands limit ß-catenin transcriptional activity, increased MYC expression unleashes the WNT oncogenic transcriptional program, promoting ß-catenin enhancer invasion without a direct transcriptional cooperation. MYC activation induces a metabolic rewiring that suppresses lysosomal biogenesis through mTOR and ERK activation and MiT/TFE inhibition. This prevents EPCAM degradation by macropinocytosis, promoting ß-catenin chromatin accumulation and activation of WNT oncogenic transcription. CONCLUSION: Our results uncovered a new signaling framework with important implications for the control of gastric epithelial architecture and WNT-dependent oncogenic transformation.
Assuntos
Molécula de Adesão da Célula Epitelial , Lisossomos , Proteínas Proto-Oncogênicas c-myc , Neoplasias Gástricas , Via de Sinalização Wnt , beta Catenina , Animais , Feminino , Humanos , Masculino , Camundongos , beta Catenina/metabolismo , beta Catenina/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Molécula de Adesão da Célula Epitelial/metabolismo , Molécula de Adesão da Célula Epitelial/genética , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Regulação Neoplásica da Expressão Gênica , Lisossomos/metabolismo , Camundongos Transgênicos , Organoides/metabolismo , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Serina-Treonina Quinases TOR/metabolismo , Transcrição GênicaRESUMO
Upon WNT/ß-catenin pathway activation, stabilized ß-catenin travels to the nucleus where it associates with the TCF/LEF transcription factors, constitutively bound to genomic Wnt-responsive elements (WREs), to activate target gene transcription. Discovering the binding profile of ß-catenin is therefore required to unambiguously assign direct targets of WNT signaling. Cleavage under targets and release using nuclease (CUT&RUN) has emerged as prime technique for mapping the binding profile of DNA-interacting proteins. Here, we present a modified version of CUT&RUN, named LoV-U (low volume and urea), that enables the robust and reproducible generation of ß-catenin binding profiles, uncovering direct WNT/ß-catenin target genes in human cells, as well as in cells isolated from developing mouse tissues. CUT&RUN-LoV-U outperforms original CUT&RUN when targeting co-factors that do not bind the DNA, can profile all classes of chromatin regulators and is well suited for simultaneous processing of several samples. We believe that the application of our protocol will allow the detection of the complex system of tissue-specific WNT/ß-catenin target genes, together with other non-DNA-binding transcriptional regulators that act downstream of ontogenetically fundamental signaling cascades.
Assuntos
Fatores de Transcrição , beta Catenina , Humanos , Camundongos , Animais , beta Catenina/genética , beta Catenina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição TCF/metabolismo , Via de Sinalização Wnt/genética , Endonucleases/metabolismo , Genômica , Ureia , Ativação TranscricionalRESUMO
The dentate gyrus, a gateway for input to the hippocampal formation, arises from progenitors in the medial telencephalic neuroepithelium adjacent to the cortical hem. Dentate progenitors navigate a complex migratory path guided by two cell populations that arise from the hem, the fimbrial glia and Cajal-Retzius (CR) cells. As the hem expresses multiple Wnt genes, we examined whether ß-catenin, which mediates canonical Wnt signaling and also participates in cell adhesion, is necessary for the development of hem-derived lineages. We report that, in mice, the fimbrial glial scaffold is disorganized and CR cells are mispositioned upon hem-specific disruption of ß-catenin. Consequently, the dentate migratory stream is severely affected, and the dentate gyrus fails to form. Using selective Cre drivers, we further determined that ß-catenin function is required in the fimbrial glial scaffold, but not in the CR cells, for guiding the dentate migration. Our findings highlight a primary requirement for ß-catenin for the organization of the fimbrial scaffold and a secondary role for this factor in dentate gyrus morphogenesis.