Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunopharmacol Immunotoxicol ; 44(3): 295-305, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35272550

RESUMO

BACKGROUND: The role and function of microRNA (miRNA, miR)-140-5p in the calcification of vascular smooth muscle cells (VSMCs) have been explored in this study. METHODS: The calcium nodules formed in transfected and ß-glycerophosphate (ß-GP)-treated VSMCs were observed using Alizarin Red S staining, and alkaline phosphatase (ALP) activity was determined. VSMC apoptosis was detected with flow cytometry assay. The target gene of miR-140-5p was predicted and confirmed with dual-luciferase reporter assay. Relative expressions of miR-140-5p, toll like receptor 4 (TLR4) and vascular calcification-related proteins (α-smooth muscle actin, α-SMA; Msh Homeobox 2, MSX2; bone morphogenetic protein 2, BMP2; Kruppel-like factor 4, KLF4; Runt-related transcription factor 2, RUNX2) were measured through quantitative real time polymerase chain reaction (qRT-PCR) and western blot. RESULTS: MiR-140-5p upregulation reversed the effects of ß-GP on downregulating miR-140-5p and α-SMA expressions, enhancing ALP activity, calcium nodule formation and cell apoptosis, and upregulating levels of MSX2, BMP2, KLF4 and RUNX2. TLR4 was the target of miR-140-5p, and offset the effects of miR-140-5p on ß-GP-induced VSMCs. CONCLUSIONS: MiR-140-5p upregulation represses ß-GP-induced calcification of VSMCs via targeting TLR4, providing a potential therapeutic method for vascular calcification.


Assuntos
MicroRNAs , Calcificação Vascular , Cálcio/metabolismo , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/farmacologia , Glicerofosfatos , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Liso Vascular , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Regulação para Cima , Calcificação Vascular/induzido quimicamente , Calcificação Vascular/genética , Calcificação Vascular/metabolismo
2.
Molecules ; 26(7)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807434

RESUMO

The aim of this work was to fabricate novel bioactive composites based on chitosan and non-organic silica, reinforced with calcium ß-glycerophosphate (Ca-GP), sodium ß-glycerophosphate pentahydrate (Na-GP), and hydroxyapatite powder (HAp) in a range of concentrations using the sol-gel method. The effect of HAp, Na-GP, and Ca-GP contents on the mechanical properties, i.e., Young's modulus, compressive strength, and yield strain, of hybrid composites was analyzed. The microstructure of the materials obtained was visualized by SEM. Moreover, the molecular interactions according to FTIR analysis and biocompatibility of composites obtained were examined. The CS/Si/HAp/Ca-GP developed from all composites analyzed was characterized by the well-developed surface of pores of two sizes: large ones of 100 µm and many smaller pores below 10 µm, the behavior of which positively influenced cell proliferation and growth, as well as compressive strength in a range of 0.3 to 10 MPa, Young's modulus from 5.2 to 100 MPa, and volumetric shrinkage below 60%. This proved to be a promising composite for applications in tissue engineering, e.g., filling small bone defects.


Assuntos
Materiais Biocompatíveis/química , Engenharia Tecidual , Alicerces Teciduais/química , Quitosana/química , Durapatita/química , Teste de Materiais , Fenômenos Mecânicos , Dióxido de Silício/química
3.
J Cell Physiol ; 234(8): 13951-13958, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30633333

RESUMO

Hard tissue lesion treatment in oral and maxillofacial has been challenging because of tissue complexities. This study aimed to investigate novel biopolymeric construct effects on the osteogenic differentiation potential of the dental pulp stem cells (DPSCs) for introducing a cell copolymer bioimplant. A blended polycaprolactone (PCL)-polyethylene oxide (PEO) was fabricated using electrospinning, simultaneously filled by ß-glycerophosphate (ß-GP). After that biocompatibility and release kinetics of the PCL-PEO+ß-GP was evaluated and compared with PCL-PEO and then the osteogenic differentiation potential of the DPSCs was examined while being cultured on the scaffolds and compared with those cultured on the culture plate. The results demonstrated that scaffolds have not any cytotoxicity and ß-GP can release in a long-term manner. Alkaline phosphatase activity and calcium content were significantly increased in DPSCs while being cultured on the PCL-PEO+ß-GP compared with the other groups. Runt-related transcription factor 2, collagen type-I, osteonectin, and osteocalcin (OSC) genes expression was upregulated in DPSCs cultured on the PCL-PEO+ß-GP and was significantly higher than those cultured on the PCL-PEO. Immunocytochemistry result also confirmed the positive effects of PCL-PEO+ß-GP on the osteogenic differentiation of the DPSCs by presenting a higher OSC protein expression. According to the results, incorporation of the ß-GP in PCL-PEO makes a better construct for osteogenic induction into the stem cells and it could be also considered as a great promising candidate for bone, oral, and maxillofacial tissue engineering applications.


Assuntos
Diferenciação Celular , Polpa Dentária/citologia , Glicerofosfatos/farmacologia , Nanofibras/química , Osteogênese , Poliésteres/farmacologia , Polietilenoglicóis/farmacologia , Células-Tronco/citologia , Fosfatase Alcalina/metabolismo , Animais , Cálcio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Liberação Controlada de Fármacos , Módulo de Elasticidade , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Nanofibras/ultraestrutura , Osteogênese/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Células-Tronco/ultraestrutura , Resistência à Tração
4.
Clin Exp Hypertens ; 40(4): 370-377, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29420074

RESUMO

Vascular calcification such as arteriosclerosis, which is characterized by a calcification of the tunica media, is a severe complication of chronic kidney disease (CKD), contributing to the high prevalence of cardiovascular morbidity and mortality in patients with CKD. An essential step during the development of arteriosclerosis is the transdifferentiation/calcification of vascular smooth muscle cells (VSMCs), resembling osteogenesis. Metabolic acidosis, a common clinical manifestation in CKD, is known to decrease vascular calcification. To understand the underlying regulatory mechanisms of acidosis, we investigated whether the acidosis-decreased VSMC calcification involves altered signaling of the LTCC/Ca2+/Runx2 pathway. Vascular calcifications, calcium content, runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), L-type calcium channel (LTCC) ß3 subunits, and calcium influx were measured in vivo or in vitro. Calcified nodules and calcium content increased either in aorta sections of vascular calcified rats or in VSMCs induced by ß-GP. The expression of Runx2 and ALP activity markedly rose, accompanied by the increasing expression of LTCC ß3 subunits and calcium influx. However, acidosis supplementation successfully attenuated VC and VSMC calcification and inhibited Runx2, ALP, LTCC ß3 subunits, and calcium influx. In conclusion, acidosis significantly attenuated vascular calcification in association with downregulation of the LTCC/Ca2+/Runx2 pathway.


Assuntos
Acidose/metabolismo , Canais de Cálcio Tipo L/metabolismo , Cálcio/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Calcificação Vascular/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Aorta/metabolismo , Células Cultivadas , Masculino , Redes e Vias Metabólicas , Ratos
5.
J Cell Mol Med ; 20(2): 217-30, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26499096

RESUMO

Vascular calcification is a frequent complication of atherosclerosis, diabetes and chronic kidney disease. In the latter group of patients, calcification is commonly seen in tunica media where smooth muscle cells (SMC) undergo osteoblastic transformation. Risk factors such as elevated phosphorus levels and vitamin D3 analogues have been identified. In the light of earlier observations by our group and others, we sought to inhibit SMC calcification via induction of ferritin. Human aortic SMC were cultured using ß-glycerophosphate with activated vitamin D3 , or inorganic phosphate with calcium, and induction of alkaline phosphatase (ALP) and osteocalcin as well as accumulation of calcium were used to monitor osteoblastic transformation. In addition, to examine the role of vitamin D3 analogues, plasma samples from patients on haemodialysis who had received calcitriol or paricalcitol were tested for their tendency to induce calcification of SMC. Addition of exogenous ferritin mitigates the transformation of SMC into osteoblast-like cells. Importantly, pharmacological induction of heavy chain ferritin by 3H-1,2-Dithiole-3-thione was able to inhibit the SMC transition into osteoblast-like cells and calcification of extracellular matrix. Plasma samples collected from patients after the administration of activated vitamin D3 caused significantly increased ALP activity in SMC compared to the samples drawn prior to activated vitamin D3 and here, again induction of ferritin diminished the osteoblastic transformation. Our data suggests that pharmacological induction of ferritin prevents osteoblastic transformation of SMC. Hence, utilization of such agents that will cause enhanced ferritin synthesis may have important clinical applications in prevention of vascular calcification.


Assuntos
Ferritinas/metabolismo , Miócitos de Músculo Liso/fisiologia , Osteoblastos/fisiologia , Fosfatase Alcalina/metabolismo , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/fisiologia , Calcitriol/metabolismo , Cálcio/metabolismo , Células Cultivadas , Colecalciferol/metabolismo , Ergocalciferóis/metabolismo , Glicerofosfatos/farmacologia , Humanos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteocalcina/metabolismo , Fosfatos/metabolismo , Tionas/farmacologia , Tiofenos/farmacologia , Calcificação Vascular/metabolismo , Calcificação Vascular/fisiopatologia
6.
Biochim Biophys Acta ; 1830(10): 4621-7, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23688398

RESUMO

BACKGROUND: Although microcalcifications of hydroxyapatite can be found in both benign and malignant osteotropic tumors, they are mostly seen in proliferative lesions, including carcinoma. The aim of this present study is to develop a molecular imaging contrast agent for selective identification of hydroxyapatite calcification in human osteotropic tumor tissues ex vivo and in human osteosarcoma cells in vitro. METHODS: A bioinspired biomarker, hydroxyapatite binding peptide (HABP), was designed to mimic natural protein osteocalcin property in vivo. A fluorescein isothiocyanate dye conjugated HABP (HABP-19) was utilized to characterize hydroxyapatite on human osteotropic tumor tissue sections ex vivo and to selectively image hydroxyapatite calcifications in human osteosarcoma cells in vitro. RESULTS: Using a HABP-19 molecular imaging probe, we have shown that it is possible to selectively image hydroxyapatite calcifications in osteotropic cancers ex vivo and in human SaOS-2 osteosarcoma cells in vitro. CONCLUSION: Hydroxyapatite calcifications were selectively detected in osteotropic tissues ex vivo and in the early stage of the calcification process of SaOS-2 human osteosarcoma in vitro using our HABP-19 molecular imaging probe. This new target-selective molecular imaging probe makes it possible to study the earliest events associated with hydroxyapatite deposition in various osteotropic cancers at the cellular and molecular levels. GENERAL SIGNIFICANCE: It potentially could be used to diagnose and treat osteotropic cancer or to anchor therapeutic agents directing the local distribution of desired therapy at calcified sites.


Assuntos
Neoplasias Ósseas/diagnóstico , Mimetismo Molecular , Osteocalcina/metabolismo , Osteossarcoma/diagnóstico , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Durapatita/metabolismo , Fluoresceína-5-Isotiocianato , Humanos , Osteossarcoma/metabolismo , Análise Serial de Tecidos
7.
Biochem Biophys Res Commun ; 443(1): 333-8, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24315873

RESUMO

Endoplasmic reticulum (ER) stress suppresses osteoblast differentiation. Activating transcription factor (ATF) 3, a member of the ATF/cAMP response element-binding protein family of transcription factors, is induced by various stimuli including cytokines, hormones, DNA damage, and ER stress. However, the role of ATF3 in osteoblast differentiation has not been elucidated. Treatment with tunicamycin (TM), an ER stress inducer, increased ATF3 expression in the preosteoblast cell line, MC3T3-E1. Overexpression of ATF3 inhibited bone morphogenetic protein 2-stimulated expression and activation of alkaline phosphatase (ALP), an osteogenic marker. In addition, suppression of ALP expression by TM treatment was rescued by silencing of ATF3 using shRNA. Taken together, these data indicate that ATF3 is a novel negative regulator of osteoblast differentiation by specifically suppressing ALP gene expression in preosteoblasts.


Assuntos
Fator 3 Ativador da Transcrição/biossíntese , Proteínas Adaptadoras de Transdução de Sinal/genética , Diferenciação Celular/genética , Estresse do Retículo Endoplasmático , Regulação da Expressão Gênica , Proteínas de Membrana/genética , Osteoblastos/citologia , Osteogênese/genética , Fator 3 Ativador da Transcrição/genética , Animais , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 2/farmacologia , Linhagem Celular , Humanos , Camundongos
8.
Biophys Chem ; 305: 107141, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38070308

RESUMO

PURPOSE: One of the difficulties in the pharmacy field is the delivery of drugs for the eyes. Topical therapy is one of the most common methods for treating eye diseases. Due to their unique properties, including biocompatibility and suitable degradation, hydrogels are appropriate for biological purposes. Platelet-rich plasma (PRP), as a designated concentration of platelets, is in a smaller volume than the plasma and is considered a rich source of growth factor that has been used in recent years, including applications in eye diseases including corneal wound healing, improvement of dry eye and post-LASIK syndrome. METHODS: The present study was performed to fabricate Chitosan (CS) and glycerophosphate (GP) based hydrogels that are temperature-sensitive for PRP and investigate their effect on ocular stem cells. RESULTS: CS-GP-based temperature-sensitive hydrogels containing PRP were successfully fabricated using CS and GP. This hydrogel is liquid at ambient temperature and a gel at ocular temperature. Rheology, FTIR, and SEM tests assessed the properties of the hydrogels. The results of the MTT test showed that the hydrogel made with the optimal formulation was not toxic to LSC cell lines. CONCLUSIONS: Given this, CS-GP-based hydrogels can be applied as a biocompatible formulation in ocular medication administration with increased bioavailability at the ocular surface and topical delivery of PRP.


Assuntos
Quitosana , Oftalmopatias , Humanos , Hidrogéis/farmacologia , Glicerofosfatos , Administração Oftálmica , Disponibilidade Biológica , Temperatura
9.
Front Bioeng Biotechnol ; 12: 1421718, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38988866

RESUMO

Introduction: The production of bone-like structural scaffolds through bone tissue engineering technology is a promising method for bone regeneration to repair bone defects. Deer antler, an easily harvested and abundantly sourced initial bone tissue structure, resembles the composition and structure of human cancellous bone and can serve as a new material for allogeneic bone transplantation. Methods: This study involved the preparation and characterization of antler powder/chitosan/ß-glycerophosphate sodium/polyvinyl alcohol (AP/CS/ß-GP/PVA) porous hydrogel scaffolds to verify their material properties and osteogenic mechanisms. The microstructure, hydrophilicity, and mechanical properties of the scaffolds were studied using Scanning Electron Microscopy (SEM), contact angle measurement, and a universal material testing machine. The interactions between the various components were investigated using Fourier-Transform Infrared Spectroscopy (FTIR). Biocompatibility, osteogenic properties, and expression of osteogenesis-related proteins of the scaffolds were evaluated through Cell Counting Kit-8 (CCK-8) assays, alkaline phosphatase staining, Alizarin Red staining, live/dead cell staining, and Western blot analysis. Results: The results showed that as the content of deer antler powder increased, both the hydrophilicity and mechanical properties of the scaffold materials improved, while the porosity slightly decreased with an increase in deer antler powder content. Cell culture experiments demonstrated that scaffolds with a higher proportion of deer antler powder were beneficial for the proliferation and differentiation of mouse pre-osteoblast (MC3T3-E1) cells, with the scaffolds containing 10% and 8% deer antler powder showing the best effects. The upregulation of RUNX2, OCN, OSX, and OPN protein expression may promote differentiation. Discussion: Therefore, the AP/CS/ß-GP/PVA hydrogel scaffolds have the potential to become a promising biomaterial for bone tissue engineering.

10.
Exp Parasitol ; 135(2): 459-65, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23994113

RESUMO

The aim of this work was to investigate whether an alkaline ecto-phosphatase activity is present in the surface of Trypanosoma rangeli. Intact short epimastigote forms were assayed for ecto-phosphatase activity to study kinetics and modulators using ß-glycerophosphate (ß-GP) and p-nitrophenyl phosphate (pNPP) as substrates. Its role in parasite development and differentiation was also studied. Competition assays using different proportions of ß-GP and pNPP evidenced the existence of independent and non-interacting alkaline and acid phosphatases. Hydrolysis of ß-GP increased progressively with pH, whereas the opposite was evident using pNPP. The alkaline enzyme was inhibited by levamisole in a non-competitive fashion. The Ca(2+) present in the reaction medium was enough for full activity. Pretreatment with PI-PLC decreased the alkaline but not the acid phosphatase evidence that the former is catalyzed by a GPI-anchored enzyme, with potential intracellular signaling ability. ß-GP supported the growth and differentiation of T. rangeli to the same extent as high orthophosphate (Pi). Levamisole at the IC50 spared significantly parasite growth when ß-GP was the sole source of Pi and stopped it in the absence of ß-GP, indicating that the alkaline enzyme can utilize phosphate monoesters present in serum. These results demonstrate the existence of an alkaline ecto-phosphatase in T. rangeli with selective requirements and sensitivity to inhibitors that participates in key metabolic processes in the parasite life cycle.


Assuntos
Fosfatase Alcalina/metabolismo , Trypanosoma rangeli/enzimologia , Trypanosoma rangeli/crescimento & desenvolvimento , Fosfatase Ácida/antagonistas & inibidores , Fosfatase Ácida/metabolismo , Catálise , Cátions Bivalentes/farmacologia , Glicerofosfatos/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Levamisol/farmacologia , Nitrofenóis/metabolismo , Compostos Organofosforados/metabolismo , Especificidade por Substrato
11.
Front Cell Dev Biol ; 11: 1258161, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965582

RESUMO

Introduction: Human bone marrow-derived mesenchymal stromal cells (hBM-MSCs) are often combined with calcium phosphate (CaP)-based 3D-printed scaffolds with the goal of creating a bone substitute that can repair segmental bone defects. In vitro, the induction of osteogenic differentiation traditionally requires, among other supplements, the addition of ß-glycerophosphate (BGP), which acts as a phosphate source. The aim of this study is to investigate whether phosphate contained within the 3D-printed scaffolds can effectively be used as a phosphate source during hBM-MSC in vitro osteogenesis. Methods: hBM-MSCs are cultured on 3D-printed discs composed of poly (lactic-co-glycolic acid) (PLGA) and ß-tricalcium phosphate (ß-TCP) for 28 days under osteogenic conditions, with and without the supplementation of BGP. The effects of BGP removal on various cellular parameters, including cell metabolic activity, alkaline phosphatase (ALP) presence and activity, proliferation, osteogenic gene expression, levels of free phosphate in the media and mineralisation, are assessed. Results: The removal of exogenous BGP increases cell metabolic activity, ALP activity, proliferation, and gene expression of matrix-related (COL1A1, IBSP, SPP1), transcriptional (SP7, RUNX2/SOX9, PPARγ) and phosphate-related (ALPL, ENPP1, ANKH, PHOSPHO1) markers in a donor dependent manner. BGP removal leads to decreased free phosphate concentration in the media and maintained of mineral deposition staining. Discussion: Our findings demonstrate the detrimental impact of exogenous BGP on hBM-MSCs cultured on a phosphate-based material and propose ß-TCP embedded within 3D-printed scaffold as a sufficient phosphate source for hBM-MSCs during osteogenesis. The presented study provides novel insights into the interaction of hBM-MSCs with 3D-printed CaP based materials, an essential aspect for the advancement of bone tissue engineering strategies aimed at repairing segmental defects.

12.
Dent Mater ; 38(4): 655-669, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35210124

RESUMO

OBJECTIVE: In this paper we propose the association of ß-glycerophosphate (ßGP) and calcium-hydroxide with chitosan (CH) to formulate a porous bioactive scaffold suitable as a cell-homing platform for dentin regeneration. METHODS: Calcium hydroxide and ßGP solutions were incorporated into chitosan to modulate scaffold architecture and composition by a phase separation technique. Architecture, chemical composition, and degradability were evaluated, and biological characterizations were performed by the seeding of dental pulp cells (DPCs) onto scaffolds, or by cultivating them in contact with leachable components (extracts), to determine cytocompatibility and odontoblastic differentiation. Cell-free scaffolds were then positioned in intimate contact with a 3D culture of DPCs in a pulp-in-a-chip platform under simulated pulp pressure. Cell mobilization and odontoblastic marker expression were evaluated. Deposition of mineralized matrix was assessed in direct contact with dentin, in the absence of osteogenic factors. RESULTS: Incorporation of calcium hydroxide and ßGP generated a stable porous chitosan scaffold containing Ca-P nanoglobule topography (CH-Ca-ßGP), which favored cell viability, alkaline phosphatase activity, and mineralized matrix deposition by cells seeded onto the scaffold structure and at a distance. The pulp-in-a-chip assay denoted its chemotactic and bioactive potential, since dentin sialoprotein-positive DPCs from 3D culture adhered to CH-Ca-ßGP more than to plain chitosan. The higher deposition of mineralized matrix onto the scaffold and surrounding dentin was also observed. SIGNIFICANCE: A CH-Ca-ßGP scaffold creates a microenvironment capable of mobilizing DPC migration toward its structure, harnessing the odontogenic potential and culminating in the expression of a highly mineralizing phenotype, key factors for a cell-homing strategy.


Assuntos
Quitosana , Polpa Dentária , Hidróxido de Cálcio , Diferenciação Celular , Células Cultivadas , Quitosana/química , Quitosana/farmacologia , Dentina , Regeneração , Alicerces Teciduais/química
13.
Macromol Biosci ; 22(4): e2100286, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34676668

RESUMO

Myocardial infarction (MI), which is due to cardiac dysfunction, results in morbidity and mortality. Moreover, the cellular activity of transplanted mesenchymal stem cells (MSCs) generally limits their therapeutic efficacy in the treatment of MI. Here, inject able hyaluronic acid-chitosan/ß-glycerophosphate (HA-CS/ß-GP) hydrogel-loaded MSCs are prepared, after which their effects on the treatment of MI are investigated. The synthesized HA-CS/ß-GP hydrogels exhibit swelling ratio, an in vitro degradation value, and a gelatin time of 82.19 ± 4.1, 88.18% ± 2.4%, and 9 s, respectively. Further, rheological studies revealed that the elastic modulus of the HA-CS/ß-GP hydrogels is ≥230 Pa, exhibiting large elastic to viscous modulus ratio, which indicates their mechanical strength. Furthermore, the in vitro 3T3 cell and MSC culture studies confirm the good biocompatibility of the HA-CS and HA-CS/ß-GP hydrogels. The implantation of the synthesized hydrogels in the mouse MI model considerably improves the therapeutic effect of the MSCs (enhanced cardiac function, reduced cardiomyocyte apoptosis, and increased vascularization) for the first time. The innovative synergistic strategy of combining injectable HA-CS and HA-CS/ß-GP hydro gels with MSCs may be suitable for the effective treatment of cardiac morbidity due to MIs.


Assuntos
Quitosana , Células-Tronco Mesenquimais , Infarto do Miocárdio , Animais , Quitosana/farmacologia , Glicerofosfatos , Ácido Hialurônico/farmacologia , Hidrogéis/farmacologia , Camundongos , Infarto do Miocárdio/terapia
14.
Carbohydr Polym ; 294: 119769, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35868748

RESUMO

An extracellular matrix (ECM) mimicking a 3D microenvironment is an essential requirement to achieve desirable repair or regeneration of damaged tissue or organ. In this context, hydrogels may be able to create an appropriate 3D microenvironment. The lack of mechanical stability limits their application. This study prepared and characterized thermosensitive injectable hydrogels based on chitosan and polygalacturonic acid (PgA). A method of producing novel biomimetic polymeric-based injectable hydrogel using hydrothermal assisted hydrolysis is introduced. The synthesized hydrogels showed good compressive stiffness. We have also studied the possible chemistry of the materials in the hydrogel network. The biocompatibility and gelation time of the hydrogel was optimized by adding ß-glycerophosphate (ßGP) and hydroxyapatite. The synthesized liquid formulation can turn into gel at 37 °C. The biocompatibility for MG63 cells within 3D hydrogels was investigated. Scanning electron microscopy revealed that the PEC fibers are uniformly distributed in the hydrogel matrix. MTT assay and confocal imaging were employed to observe cytotoxicity and proliferation of cells cultured in the hydrogels with and without an osteogenic medium. Alkaline phosphatase activity (ALP) and collagen production in cell-cultured hydrogel were also measured to evaluate osteoblast activity. The cellular responses to various types of hydrogels cultured at a 14-day culture appeared to be superior in the hydrogels with gelatin incorporated and hydrothermally treated PEC fibers. These results indicated that hydrothermal treatment and inclusion of gelatin in the chitosan-ßGP hydrogel system enhanced the hydrogel bioactivity and mechanical properties. Overall, improved cellular proliferation, osteogenic differentiation, and stable physical network with uniform distribution of fibrous matrix in-vitro were achieved.


Assuntos
Quitosana , Quitosana/química , Gelatina , Hidrogéis/química , Hidrogéis/farmacologia , Osteogênese/fisiologia , Pectinas , Polieletrólitos , Engenharia Tecidual/métodos
15.
J Bone Oncol ; 34: 100432, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35620245

RESUMO

Focal Adhesion Kinase (FAK) is an important regulator of tumor cell proliferation, survival and metastasis. As such it has become a therapeutic target of interest in cancer. Previous studies suggested that use of FAK tyrosine kinase inhibitors (TKIs) blocks osteolysis in in vivo models of bone metastasis. However, from these studies it was not clear whether FAK TKIs blocked bone degradation by osteoclasts or also promoted bone formation by osteoblasts. In this study we evaluated whether use of the FAK TKI PF-562,271 affected the differentiation of pre-osteoblasts, or activity of mature differentiated osteoblasts. MC3T3-E1 pre-osteoblastic cells were treated with various doses of PF-562,271 following 3 or 10 days of differentiation which led to the inhibition of alkaline phosphatase (ALP) expression and reduced viable cell numbers in a dose-dependent manner. MC3T3-E1 cells which had been differentiated for 21 days prior to treatment with PF-562,271 showed a dose dependent decrease in mineralization as assessed by Alizarin Red staining, with concomitant decreased expression of ALP which is known to facilitate the bone mineralization activity of osteoblasts, however mRNA levels of the transcription factors RUNX2 and osterix which are important for osteoblast maturation and mineralization appeared unaffected at this time point. We speculated that this may be due to altered function of RUNX2 protein due to inhibitory phosphorylation by GSK3ß. We found treatment with PF-562,271 resulted in increased GSK3ß activity as measured by reduced levels of phospho-Ser9-GSK3ß which would result in phosphorylation and inhibition of RUNX2. Treatment of 21 day differentiated MC3T3-E1 cells with PF-562,271 in combination with GSK3ß inhibitors partially restored mineralization however this was not statistically significant. As we observed that FAK TKI also resulted in suppression of Akt, which is known to alter osterix protein stability downstream of RUNX2, we examined protein levels by western blot and found a dose-dependent decrease in osterix in FAK TKI treated differentiated MC3T3-E1 cells which is likely responsible for the reduced mineralization observed. Taken together our results suggest that use of FAK TKIs as therapeutics in the bone metastatic setting may block new bone formation as an off-target effect and thereby exacerbate the defective bone regulation that is characteristic of the bone metastatic environment.

16.
Carbohydr Polym ; 281: 119020, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35074102

RESUMO

Amniotic membrane (AM) has been utilized as a wound dressing extensively. Given the importance of oxygen in wound healing, here we have reported the fabrication and characterization of an oxygen-generating wound dressing based on AM. This construct was composed of H2O2-loaded polylactic acid (PLA) microparticles embedded within a chitosan/ß-glycerophosphate (ß-GP) thermosensitive hydrogel covered with a layer of decellularized human-AM. The microparticles had a diameter of 4.48 ± 1.8 µm, an encapsulation efficiency of 44.172 ± 4.49%, and generated oxygen for at least 7 days. The hybrid construct was formed at 32.4 ± 2 °C, had a porous structure (84.69 ± 8.34%) with a pore size of 46.72 ± 26.21 µm. The hydrogel/dAM extract was non-toxic after 7 days based on our MTT results, and the final composite supported cell growth and adhesion. This sample had the most negligible blood cell adhesion with less than 5% hemolysis. Our results indicate the proposed structure's desirable biological, chemical, and physical properties as an active wound dressing.


Assuntos
Quitosana , Hidrogéis , Âmnio , Bandagens , Quitosana/química , Humanos , Hidrogéis/química , Peróxido de Hidrogênio , Oxigênio
17.
JACC Basic Transl Sci ; 7(7): 697-712, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35958694

RESUMO

There are currently no pharmacological therapies for calcific aortic valve disease (CAVD). Here, we evaluated the role of protein tyrosine phosphatase 1B (PTP1B) inhibition in CAVD. Up-regulation of PTP1B was critically involved in calcified human aortic valve, and PTP1B inhibition had beneficial effects in preventing fibrocalcific response in valvular interstitial cells and LDLR-/- mice. In addition, we reported a novel function of PTP1B in regulating mitochondrial homeostasis by interacting with the OPA1 isoform transition in valvular interstitial cell osteogenesis. Thus, these findings have identified PTP1B as a potential target for preventing aortic valve calcification in patients with CAVD.

18.
Int J Spine Surg ; 15(5): 921-928, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34649952

RESUMO

BACKGROUND: Ascorbic acid is involved in collagen biosynthesis and upregulates alkaline phosphatase, potentially alleviating cell senescence and stimulating mesenchymal stem cell proliferation and differentiation into osteoblasts. We hypothesized locally delivered ascorbic acid and ß-glycerophosphate act as a bone graft extender to increase the volume of new bone formed in a murine model of posterior lumbar fusion. METHODS: Collagen sponges were used as delivery vehicles. Sponges were prepared with primary media alone or with the addition of ascorbic acid and ß-glycerophosphate. Fresh morselized bone graft from 12 donor mice was used. Twenty-four healthy male C57BL/6 mice underwent an uninstrumented posterior L3-L5 lumbar fusion. One control group received morselized bone only. A second "sponge control" group received morselized bone with the control collagen sponge. The third group received morselized bone and a collagen sponge with ascorbic acid and ß-glycerophosphate. Three months postoperatively, the lumbar spine underwent high-resolution micro-computed tomography for analysis of bone formation, density, and bridging fusion. RESULTS: Animals receiving ascorbic acid and ß-glycerophosphate had a statistically significant increase in corrected bone volume compared with control and sponge groups, with a 56.3% and 25.4% increase, respectively. Mineralized bone fraction was statistically significantly decreased for animals in the ascorbic acid group compared with control and sponge groups. There was no significant difference in fusion rate between test groups. CONCLUSIONS: Locally delivered ascorbic acid and ß-glycerophosphate in a murine model of posterior spinal fusion yielded statistically significant increases in new bone formation in the lumbar spine but statistically significant decreases in mineralized bone fraction. Differences in fusion rate were not statistically significant. CLINICAL RELEVANCE: This study provides early data suggesting that delivery of ascorbic acid to a spinal fusion site may be beneficial but does not yet establish an indication for clinical use. Further studies are needed to determine optimal dose and delivery of ascorbic acid.

19.
Eur J Pharm Sci ; 167: 106041, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34655737

RESUMO

The aim of the current work is to develop a thermo-sensitive hydrogel system of moxifloxacin hydrochloride (MOX) for improved ocular delivery. Fifteen formulations were prepared at different concentrations of ß-glycerophosphate disodium salt (ß-GP) 12-20% (w/v) and chitosan (CS) 1.7-1.9% (w/v). The optimized MOX loaded thermo-sensitive hydrogel system (F8), consisting of CS (1.8%, w/v) and ß-GP (16%, w/v), showed optimum gelation temperature (35 °C) and gelation time (2 min), thus was selected for further investigations. It showed a significant decrease (p < 0.05) in the zeta potential value compared to CS solution with a favorable pH value (7.1) and confirmed thermoreversible behavior. MOX loaded F8 displayed a porous structure under scanning electron microscopy. Rheological investigation of MOX loaded F8 revealed the presence of a strong hydrogel network with high elasticity along with a small loss factor of 0.08 indicating a great ease of gel formation. The release of MOX from F8 was found to be governed by a combined mechanism of diffusion and relaxation. Biological assessment of two concentrations of MOX loaded F8 (0.25 and 0.5%) was conducted using healthy and infected male albino New Zealand rabbits, where an improved and prolonged antibacterial activity against Staphylococcus aureus compared to plain MOX (0.5%), marketed MOX eye drops (0.5%), was shown. Moreover, histopathological examination of ocular tissues confirmed the antibacterial efficacy of the optimized formulation eight days post topical therapy. Consequently, the developed CS/ß-GP thermo-sensitive hydrogel system (F8) reveals a promising potential for enhancing the ocular delivery of MOX for treatment of bacterial infections.


Assuntos
Quitosana , Animais , Glicerofosfatos , Hidrogel de Polietilenoglicol-Dimetacrilato , Hidrogéis , Masculino , Moxifloxacina , Coelhos , Temperatura
20.
Polymers (Basel) ; 13(11)2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067377

RESUMO

Endoscopic submucosal dissection (ESD) is a surgical procedure to remove early neoplastic lesions in the gastrointestinal tract with the critical issue of perforation. A submucosal fluid cushion, such as normal saline, is used as a cushioning agent to prevent perforation; however, its cushioning maintenance is insufficient for surgery. In this study, we introduce an injectable thermosensitive chitosan solution (CS) with ß-glycerophosphate (ß-GP) as a submucosal injection agent for ESD. The CS/ß-GP system with optimal ß-GP concentration showed drastic viscosity change near body temperature while other commercial products did not. Additionally, the injectability of the solution was similar to or greater than other commercial products. The solution with low ß-GP concentration showed low cytotoxicity similar to other products. An in vivo preclinical study illustrated maintenance of the high cushioning of the thermosensitive solutions. These results indicate that a CS/ß-GP system with optimal ß-GP concentration might be used as a submucosal injection agent in ESD, and further studies are needed to validate the effectiveness of the solutions in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA