Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014918

RESUMO

Electrochemical advanced oxidation is an appealing point-of-use groundwater treatment option for removing pollutants such as 1,4-dioxane, which is difficult to remove by using conventional separation-based techniques. This study addresses a critical challenge in employing electrochemical cells in practical groundwater treatment─electrode stability over long-term operation. This study aims to simulate realistic environmental scenarios by significantly extending the experimental time scale, testing a flow-through cell in addition to a batch reactor, and employing an electrolyte with a conductivity equivalent to that of groundwater. We first constructed a robust titanium suboxide nanotube mesh electrode that is utilized as both anode and cathode. We then implemented a pulsed electrolysis strategy in which reactive oxygen species are generated during the anodic cycle, and the electrode is regenerated during the cathodic cycle. Under optimized conditions, single-pass treatment through the cell (effective area: 2 cm2) achieved a remarkable 65-70% removal efficiency for 1,4-dioxane in the synthetic groundwater for over 100 h continuous operation at a low current density of 5 mA cm-2 and a water flux of 6 L m-2 h-1. The electrochemical cell and pulse treatment scheme developed in this study presents a critical advancement toward practical groundwater treatment technology.

2.
Environ Sci Technol ; 58(29): 13157-13167, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38996057

RESUMO

Dichloramine (NHCl2) naturally exists in reverse osmosis (RO) permeate due to its application as an antifouling chemical in membrane-based potable reuse treatment. This study investigated mechanisms of background NHCl2 hydrolysis associated with the generation of oxidative radical species in RO permeate, established a kinetic model to predict the oxidative capacity, and examined its removal efficiency on trace organic contaminants in potable reuse. Results showed that NHCl2 hydrolysis generated transient peroxynitrite (ONOO-) and subsequently dissociated into hydroxyl radical (HO•). The maximal HO• exposure was observed at an RO permeate pH of 8.4, higher than that from typical ultraviolet (UV)-based advanced oxidation processes. The HO• exposure during NHCl2 hydrolysis also peaked at a NH2Cl-to-NHCl2 molar ratio of 1:1. The oxidative capacity rapidly degraded 1,4-dioxane, carbamazepine, atenolol, and sulfamethoxazole in RO permeate. Furthermore, background elevated carbonate in fresh RO permeate can convert HO• to carbonate radical (CO3•-). Aeration of the RO permeate removed total carbonate, significantly increased HO• exposure, and enhanced the degradation kinetics of trace organic contaminants. The kinetic model of NHCl2 hydrolysis predicted well the degradation of contaminants in RO permeate. This study provides new mechanistic insights into NHCl2 hydrolysis that contributes to the oxidative degradation of trace organic contaminants in potable reuse systems.


Assuntos
Oxirredução , Purificação da Água , Hidrólise , Purificação da Água/métodos , Membranas Artificiais , Poluentes Químicos da Água/química , Cinética
3.
Chem Pharm Bull (Tokyo) ; 72(4): 408-412, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38658365

RESUMO

A facile and selective ß-D-glucuronidation of alcohols, such as (-)-menthol, cholestanol, (+)- and (-)-borneols, and 2-adamantanol, using commercially available methyl 1,2,3,4-tetra-O-acetyl-ß-D-glucuronate as the glycosyl donor and trimethylsilyl bis(trifluoromethanesulfonyl)imide (Tf2NTMS) (0.5 equivalent) as the activator in 1,4-dioxane at 60 °C gave products in moderate yields. The addition of MS4A increased the ß : α ratios of D-glucuronides when cholestanol, (+)-borneol, and 2-adamantanol were used as the acceptor substrate.


Assuntos
Dioxanos , Solventes , Dioxanos/química , Solventes/química , Glucuronídeos/química , Glucuronídeos/síntese química , Glicosilação , Estrutura Molecular
4.
Arch Pharm (Weinheim) ; : e2400337, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39054609

RESUMO

A new series of muscarinic acetylcholine receptor (mAChR) ligands obtained by inserting different substituents in position 2 of the potent 6,6-diphenyl-1,4-dioxane antagonists 4 and 5 was designed and synthesized to investigate the influence of steric bulk on the mAChR affinity. Specifically, the insertion of a 2-methyl group, affording compounds 6 and 9, resulted as the most favorable modification in terms of affinity for all muscarinic subtypes. As supported by computational studies performed on the hM1 receptor, this substituent may contribute to stabilize the ligand within the binding site by favoring the formation of stable interactions between the cationic head of the ligand and the residue D105. The increase of steric bulk, obtained by replacing the methyl group with an ethyl (7 and 10) and especially a phenyl substituent (8 and 11), caused a marked decrease of mAChR affinity, demonstrating the crucial role played by the steric bulk of the 2-substituent in the mAChR interaction. The most intriguing result was obtained with the tertiary amine 9, which, surprisingly, showed two different pKi values for all mAChRs, with preferential subpicomolar affinities for the M1, M3, and M4 subtypes. Interestingly, biphasic curves were also observed with both the eutomer (S)-(-)-9 and the distomer (R)-( + )-9.

5.
Int J Phytoremediation ; 26(4): 546-556, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37667465

RESUMO

This study focuses on applying phytoremediation as a low-effective and simple process to treat wastewater laden with 1,4 dioxane (DIOX). A floating macrophyte (Eichhornia crassipes) was cultivated under hydroponic conditions (relative humidity 50-67%, photoperiod cycle 18:6 h light/dark, and 28-33 °C) and subjected to different DIOX loads between 0.0 (control) and 11.5 mg/g fresh mass (FM). The aquatic plant achieved DIOX and chemical oxygen demand (COD) removal efficiencies of 76-96% and 67-94%, respectively, within 15 days. E. crassipes could tolerate elevated DIOX-associated stresses until a dose of 8.2 mg DIOX/g, which highly influenced the oxidative defense system. Malondialdehyde (MDA) content, hydrogen peroxide (H2O2), and total phenolic compounds (TPC) increased by 7.3, 8.4, and 4.5-times, respectively, in response to operating the phytoremediation unit at a DIOX load of 11.5 mg/g. The associated succulent value, proteins, chlorophyll-a, chlorophyll-b, and pigments dropped by 39.6%, 45.8%, 51.5%, 80.8%, and 55.5%, respectively. The suggested removal mechanism of DIOX by E. crassipes could be uptake followed by phytovolatilization, whereas direct photodegradation from sunlight contributed to about 19.36% of the total DIOX removal efficiencies. Recycling the exhausted E. crassipes for biochar production was a cost-efficient strategy, making the payback period of the phytoremediation project equals to 6.96 yr.


Eichhornia crassipes could be used in phytoremediation of 1,4 dioxane (DIOX)-laden water at DIOX load< 8.2 mg/g FM. E. crassipes removed 77­97% DIOX via uptake and phytovolatilization. Recycling exhausted-plant to produce biochar was cost-efficient with 7 yr-payback period.


Assuntos
Carvão Vegetal , Eichhornia , Poluentes Químicos da Água , Biodegradação Ambiental , Eichhornia/metabolismo , Hidroponia , Peróxido de Hidrogênio/metabolismo , Poluentes Químicos da Água/metabolismo , Dioxanos/metabolismo , Clorofila/metabolismo
6.
Water Sci Technol ; 89(9): 2440-2456, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747959

RESUMO

1,4-Dioxane concentration in most contaminated water is much less than 1 mg/L, which cannot sustain the growth of most reported 1,4-dioxane-metabolizing pure cultures. These pure cultures were isolated following enrichment of mixed cultures at high concentrations (20 to 1,000 mg/L). This study is based on a different strategy: 1,4-dioxane-metabolizing mixed cultures were enriched by periodically spiking 1,4-dioxane at low concentrations (≤1 mg/L). Five 1,4-dioxane-metabolizing pure strains LCD6B, LCD6D, WC10G, WCD6H, and WD4H were isolated and characterized. The partial 16S rRNA gene sequencing showed that the five bacterial strains were related to Dokdonella sp. (98.3%), Acinetobacter sp. (99.0%), Afipia sp. (99.2%), Nitrobacter sp. (97.9%), and Pseudonocardia sp. (99.4%), respectively. Nitrobacter sp. WCD6H is the first reported 1,4-dioxane-metabolizing bacterium in the genus of Nitrobacter. The net specific growth rates of these five cultures are consistently higher than those reported in the literature at 1,4-dioxane concentrations <0.5 mg/L. Compared to the literature, our newly discovered strains have lower half-maximum-rate concentrations (1.8 to 8.2 mg-dioxane/L), lower maximum specific 1,4-dioxane utilization rates (0.24 to 0.47 mg-dioxane/(mg-protein ⋅ d)), higher biomass yields (0.29 to 0.38 mg-protein/mg-dioxane), and lower decay coefficients (0.01 to 0.02 d-1). These are characteristics of microorganisms living in oligotrophic environments.


Assuntos
Dioxanos , Dioxanos/metabolismo , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , RNA Ribossômico 16S/genética , Filogenia , Poluentes Químicos da Água/metabolismo
7.
Environ Sci Technol ; 57(47): 18499-18508, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37467303

RESUMO

The use of ozone/biofiltration advanced treatment has become more prevalent in recent years, with many utilities seeking an alternative to membrane/RO based treatment for water reuse. Ensuring efficient pathogen reduction while controlling disinfection byproducts and maximizing oxidation of trace organic contaminants remains a major barrier to implementing ozone in reuse applications. Navigating these challenges is imperative in order to allow for the more widespread application of ozonation. Here, we demonstrate the effectiveness of ozone for virus, coliform bacteria, and spore forming bacteria inactivation in unfiltered secondary effluent, all the while controlling the disinfection byproduct bromate. A greater than 6-log reduction of both male specific and somatic coliphages was seen at specific ozone doses as low as 0.75 O3:TOC. This study compared monochloramine and hydrogen peroxide as chemical bromate control measures in high bromide water (Br- = 0.35 ± 0.07 mg/L). On average, monochloramine and hydrogen peroxide resulted in an 80% and 36% decrease of bromate formation, respectively. Neither bromate control method had any appreciable impact on virus or coliform bacteria disinfection by ozone; however, the use of hydrogen peroxide would require a non-Ct disinfection framework. Maintaining ozone residual was shown to be critical for achieving disinfection of more resilient microorganisms, such as spore forming bacteria. While extremely effective at controlling bromate, monochloramine was shown to inhibit TrOC oxidation, whereas hydrogen peroxide enhanced TrOC oxidation.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Masculino , Humanos , Desinfecção/métodos , Água , Purificação da Água/métodos , Bromatos/química , Peróxido de Hidrogênio/química , Poluentes Químicos da Água/análise
8.
Appl Microbiol Biotechnol ; 107(2-3): 955-969, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36625913

RESUMO

1,4-Dioxane is a contaminant of emerging concern that has been commonly detected in groundwater. In this study, a stable and robust 1,4-dioxane degrading enrichment culture was obtained from uncontaminated soil. The enrichment was capable to metabolically degrade 1,4-dioxane at both high (100 mg L-1) and environmentally relevant concentrations (300 µg L-1), with a maximum specific 1,4-dioxane degradation rate (qmax) of 0.044 ± 0.001 mg dioxane h-1 mg protein-1, and 1,4-dioxane half-velocity constant (Ks) of 25 ± 1.6 mg L-1. The microbial community structure analysis suggested Pseudonocardia species, which utilize the dioxane monooxygenase for metabolic 1,4-dioxane biodegradation, were the main functional species for 1,4-dioxane degradation. The enrichment culture can adapt to both acidic (pH 5.5) and alkaline (pH 8) conditions and can recover degradation from low temperature (10°C) and anoxic (DO < 0.5 mg L-1) conditions. 1,4-Dioxane degradation of the enrichment culture was reversibly inhibited by TCE with concentrations higher than 5 mg L-1 and was completely inhibited by the presence of 1,1-DCE as low as 1 mg L-1. Collectively, these results demonstrated indigenous stable and robust 1,4-dioxane degrading enrichment culture can be obtained from uncontaminated sources and can be a potential candidate for 1,4-dioxane bioaugmentation at environmentally relevant conditions. KEY POINTS: •1,4-Dioxane degrading enrichment was obtained from uncontaminated soil. • The enrichment culture could degrade 1,4-dioxane to below 10 µg L-1. •Low Ks and low cell yield of the enrichment benefit its application in bioremediation.


Assuntos
Microbiota , Poluentes Químicos da Água , Solo , Biodegradação Ambiental , Dioxanos/metabolismo , Poluentes Químicos da Água/metabolismo
9.
Regul Toxicol Pharmacol ; 142: 105428, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37277058

RESUMO

1,4-Dioxane is an environmental contaminant that has been shown to cause cancer in rodents after chronic high dose exposures. We reviewed and integrated information from recently published studies to update our understanding of the cancer mode of action of 1,4-dioxane. Tumor development in rodents from exposure to high doses of 1,4-dioxane is preceded by pre-neoplastic events including increased hepatic genomic signaling activity related to mitogenesis, elevation of Cyp2E1 activity and oxidative stress leading to genotoxicity and cytotoxicity. These events are followed by regenerative repair and proliferation and eventual development of tumors. Importantly, these events occur at doses that exceed the metabolic clearance of absorbed 1,4-dioxane in rats and mice resulting in elevated systemic levels of parent 1,4-dioxane. Consistent with previous reviews, we found no evidence of direct mutagenicity from exposure to 1,4-dioxane. We also found no evidence of CAR/PXR, AhR or PPARα activation resulting from exposure to 1,4-dioxane. This integrated assessment supports a cancer mode of action that is dependent on exceeding the metabolic clearance of absorbed 1,4-dioxane, direct mitogenesis, elevation of Cyp2E1 activity and oxidative stress leading to genotoxicity and cytotoxicity followed by sustained proliferation driven by regenerative repair and progression of heritable lesions to tumor development.


Assuntos
Neoplasias , Roedores , Ratos , Camundongos , Animais , Citocromo P-450 CYP2E1 , Medição de Risco
10.
Biodegradation ; 34(3): 283-300, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36808270

RESUMO

The potential of a native digestate microbial community for 1,4-dioxane (DX) biodegradation was evaluated under low dissolved oxygen (DO) concentrations (1-3 mg/L) under different conditions in terms of electron acceptors, co-substrates, co-contaminants and temperature. Complete DX biodegradation (detection limit of 0.01 mg/L) of initial 25 mg/L was achieved in 119 days under low DO concentrations, while complete biodegradation happened faster at 91 and 77 days, respectively in nitrate-amended and aerated conditions. In addition, conducting biodegradation at 30 ˚C showed that the time required for complete DX biodegradation in unamended flasks reduced from 119 days in ambient condition (20-25 °C) to 84 days. Oxalic acid, which is a common metabolite of DX biodegradation was identified in the flasks under different treatments including unamended, nitrate-amended and aerated conditions. Furthermore, transition of the microbial community was monitored during the DX biodegradation period. While the overall richness and diversity of the microbial community decreased, several families of known DX-degrading bacteria such as Pseudonocardiaceae, Xanthobacteraceae and Chitinophagaceae were able to maintain and grow in different electron-accepting conditions. The results suggested that DX biodegradation under low DO concentrations, where no external aeration was provided, is possible by the digestate microbial community, which can be helpful to the ongoing research for DX bioremediation and natural attenuation.


Assuntos
Microbiota , Poluentes Químicos da Água , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Nitratos , Elétrons
11.
Biodegradation ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37917252

RESUMO

Biodegradation of 1,4-Dioxane at environmentally relevant concentrations usually requires the addition of a primary electron-donor substrate to sustain biomass growth. Ethane is a promising substrate, since it is available as a degradation product of 1,4-Dioxane's common co-contaminants. This study reports kinetic parameters for ethane biodegradation and co-oxidations of ethane and 1,4-Dioxane. Based on experiments combined with mathematical modeling, we found that ethane promoted 1,4-Dioxane biodegradation when the initial mass ratio of ethane:1,4-Dioxane was < 9:1 mg COD/mg COD, while it inhibited 1,4-Dioxane degradation when the ratio was > 9:1. A model-independent estimator was used for kinetic-parameter estimation, and all parameter values for 1,4-Dioxane were consistent with literature-reported ranges. Estimated parameters support competitive inhibition between ethane as the primary substrate and 1,4-Dioxane as the secondary substrate. The results also support that bacteria that co-oxidize ethane and 1,4-Dioxane had a competitive advantage over bacteria that can use only one of the two substrates. The minimum concentration of ethane to sustain ethane-oxidizing bacteria and ethane and 1,4-Dioxane-co-oxidizing bacteria was 0.09 mg COD/L, which is approximately 20-fold lower than the minimum concentration reported for propane, another common substrate used to promote 1,4-Dioxane biodegradation. The minimum 1,4-Dioxane concentration required to sustain steady-state biomass with 1,4-Dioxane as the sole primary substrate was 1.3 mg COD/L. As 1,4-Dioxane concentrations at most groundwater sites are less than 0.18 mg COD/L, providing ethane as a primary substrate is vital to support biomass growth and consequently enable 1,4-Dioxane bioremediation.

12.
BMC Biol ; 20(1): 10, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996439

RESUMO

BACKGROUND: The synthetic chemical 1,4-dioxane is used as industrial solvent, food, and care product additive. 1,4-Dioxane has been noted to influence the nervous system in long-term animal experiments and in humans, but the molecular mechanisms underlying its effects on animals were not previously known. RESULTS: Here, we report that 1,4-dioxane potentiates the capsaicin-sensitive transient receptor potential (TRP) channel TRPV1, thereby causing hyperalgesia in mouse model. This effect was abolished by CRISPR/Cas9-mediated genetic deletion of TRPV1 in sensory neurons, but enhanced under inflammatory conditions. 1,4-Dioxane lowered the temperature threshold for TRPV1 thermal activation and potentiated the channel sensitivity to agonistic stimuli. 1,3-dioxane and tetrahydrofuran which are structurally related to 1,4-dioxane also potentiated TRPV1 activation. The residue M572 in the S4-S5 linker region of TRPV1 was found to be crucial for direct activation of the channel by 1,4-dioxane and its analogs. A single residue mutation M572V abrogated the 1,4-dioxane-evoked currents while largely preserving the capsaicin responses. Our results further demonstrate that this residue exerts a gating effect through hydrophobic interactions and support the existence of discrete domains for multimodal gating of TRPV1 channel. CONCLUSIONS: Our results suggest TRPV1 is a co-receptor for 1,4-dioxane and that this accounts for its ability to dysregulate body nociceptive sensation.


Assuntos
Hiperalgesia , Canais de Cátion TRPV , Animais , Capsaicina/farmacologia , Dioxanos , Camundongos , Solventes , Canais de Cátion TRPV/genética
13.
Int J Mol Sci ; 24(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37240291

RESUMO

The aim of the work was to analyze the preferential solvation process, and determine the composition of the solvation shell of cyclic ethers using the calorimetric method. The heat of solution of 1,4-dioxane, 12-crown-4, 15-crown-5 and 18-crown-6 ethers in the mixture of N-methylformamide with water was measured at four temperatures, 293.15 K, 298.15 K, 303.15 K, and 308.15 K, and the standard partial molar heat capacity of cyclic ethers has been discussed. 18-crown-6 (18C6) molecules can form complexes with NMF molecules through the hydrogen bonds between -CH3 group of NMF and the oxygen atoms of 18C6. Using the model of preferential solvation, the cyclic ethers were observed to be preferentially solvated by NMF molecules. It has been proved that the molar fraction of NMF in the solvation shell of cyclic ethers is higher than that in the mixed solvent. The exothermic, enthalpic effect of preferential solvation of cyclic ethers increases with increasing ring size and temperature. The increase in the negative effect of the structural properties of the mixed solvent with increase in the ring size in the process of preferential solvation of the cyclic ethers indicates an increasing disturbance of the mixed solvent structure, which is reflected in the influence of the energetic properties of the mixed solvent.


Assuntos
Éteres de Coroa , Água , Temperatura , Água/química , Éteres Cíclicos , Éteres de Coroa/química , Solventes
14.
Environ Sci Technol ; 56(2): 1341-1351, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34964609

RESUMO

We introduce a new graphene oxide (GO)-based membrane architecture that hosts cobalt catalysts within its nanoscale pore walls. Such an architecture would not be possible with catalysts in nanoscale, the current benchmark, since they would block the pores or alter the pore structure. Therefore, we developed a new synthesis procedure to load cobalt in an atomically dispersed fashion, the theoretical limit in material downsizing. The use of vitamin C as a mild reducing agent was critical to load Co as dispersed atoms (Co1), preserving the well-stacked 2D structure of GO layers. With the addition of peroxymonosulfate (PMS), the Co1-GO membrane efficiently degraded 1,4-dioxane, a small, neutral pollutant that passes through nanopores in single-pass treatment. The observed 1,4-dioxane degradation kinetics were much faster (>640 times) than the kinetics in suspension and the highest among reported persulfate-based 1,4-dioxane destruction. The capability of the membrane to reject large organic molecules alleviated their effects on radical scavenging. Furthermore, the advanced oxidation also mitigated membrane fouling. The findings of this study present a critical advance toward developing catalytic membranes with which two distinctive and complementary processes, membrane filtration and advanced oxidation, can be combined into a single-step treatment.


Assuntos
Poluentes Ambientais , Grafite , Catálise , Cobalto/química
15.
Environ Sci Technol ; 56(8): 5266-5275, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35380802

RESUMO

1,4-Dioxane is a persistent and mobile organic chemical that has been found by the United States Environmental Protection Agency (USEPA) to be an unreasonable risk to human health in some occupational contexts. 1,4-Dioxane is released into the environment as industrial waste and occurs in some personal-care products as an unintended byproduct. However, limited exposure assessments have been conducted outside of an occupational context. In this study, the USEPA simulation modeling tool, Stochastic Human Exposure and Dose Simulator-High Throughput (SHEDS-HT), was adapted to estimate the exposure and chemical mass released down the drain (DTD) from drinking water consumption and product use. 1,4-Dioxane concentrations measured in drinking water and consumer products were used by SHEDS-HT to evaluate and compare the contributions of these sources to exposure and mass released DTD. Modeling results showed that compared to people whose daily per capita exposure came from only products (2.29 × 10-7 to 2.92 × 10-7 mg/kg/day), people exposed to both contaminated water and product use had higher per capita median exposures (1.90 × 10-6 to 4.27 × 10-6 mg/kg/day), with exposure mass primarily attributable to water consumption (75-91%). Last, we demonstrate through simulation that while a potential regulatory action could broadly reduce DTD release, the proportional reduction in exposure would be most significant for people with no or low water contamination.


Assuntos
Água Potável , Poluentes Químicos da Água , Dioxanos/análise , Exposição Ambiental/análise , Humanos , Compostos Orgânicos , Medição de Risco , Estados Unidos , Poluentes Químicos da Água/análise
16.
Environ Sci Technol ; 56(15): 10857-10867, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35868007

RESUMO

Persistent, mobile, and toxic (PMT) and very persistent and very mobile (vPvM) substances have been recognized as a threat to both the aquatic environment and to drinking water resources. These substances are currently prioritized for regulatory action by the European Commission, whereby a proposal for the inclusion of hazard classes for PMT and vPvM substances has been put forward. Comprehensive monitoring data for many PMT/vPvM substances in drinking water sources are scarce. Herein, we analyze 34 PMT/vPvM substances in 46 surface water, groundwater, bank filtrate, and raw water samples taken throughout Germany. Results of the sampling campaign demonstrated that known PMT/vPvM substances such as 1H-benzotriazole, melamine, cyanuric acid, and 1,4-dioxane are responsible for substantial contamination in the sources of German drinking water. In addition, the results revealed the widespread presence of the emerging substances 2-acrylamido-2-methylpropanesulfonic acid (AMPS) and diphenylguanidine (DPG). A correlation analysis showed a pronounced co-occurrence of PMT/vPvM substances associated predominantly with consumer or professional uses and also demonstrated an inhomogeneous co-occurrence for substances associated mainly with industrial use. These data were used to test the hypothesis that most PMT/vPvM substances pass bank filtration without significant concentration reduction, which is one of the main reasons for introducing PMT/vPvM as a hazard class within Europe.


Assuntos
Água Potável , Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental , Filtração , Alemanha , Poluentes Químicos da Água/análise
17.
Environ Res ; 214(Pt 2): 113939, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35921903

RESUMO

1,4-dioxane is a heterocyclic ether used as a polar industrial solvent and are released as waste discharges. 1,4-dioxane deteriorates health and quality, thereby attracts concern by the environment technologists. The need of attaining sustainable development goals have resulted in search of an eco-friendly and technically viable treatment strategy. This extensive review is aimed to emphasis on the (a) characteristics of 1,4-dioxane and their occurrence in the environment as well as their toxicity, (b) remedial strategies, such as physico-chemical treatment and advanced oxidation techniques. Special reference to bioremediation that involves diverse microbial strains and their mechanism are highlighted in this review. The role of macronutrients, stimulants and other abiotic cofactors in the biodegradation of 1,4-dioxane is discussed lucidly. We have critically discussed the inducible enzymes, enzyme-based remediation, distinct instrumental method of analyses to know the fate of intermediates produced from 1,4-dioxane biotransformation. This comprehensive survey also tries to put forth the different toxicity assessment tools used in evaluating the extent of detoxification of 1,4-dioxane achieved through biotransforming mechanism. Conclusively, the challenges, opportunities, techno-economic feasibility and future prospects of implementing 1,4-dioxane through biotechnological interventions are also discussed.


Assuntos
Poluentes Químicos da Água , Biodegradação Ambiental , Dioxanos/análise , Dioxanos/metabolismo , Poluentes Químicos da Água/análise
18.
Environ Res ; 205: 112511, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34871598

RESUMO

The present investigation reports the biotransformation of an endrocrine disrupting agent; 1,4-dioxane through bacterial metabolism. Initially, potential bacterial isolates capable of surviving with minimum 1,4-dioxane were screened from industrial wastewater. Thereafter, screening was done to isolate a bacteria which can biotransform higher concentration (1000 mg/L) of 1,4-dioxane. Morphological and biochemical features were examined prior establishing their phylogenetic relationships and the bacterium was identified as Staphylococcus capitis strain AG. Biotransformation experiments were tailored using response surface tool and predictions were made to elucidate the opimal conditions. Critical factors influencing bio-transformation efficiency such as tetrahydrofuran, availability of 1,4-dioxane and inoculum size were varied at three different levels as per the central composite design for ameliorating 1,4-dioxane removal. Functional attenuation of 1,4-dioxane by S. capitis strain AG were understood using spectroscopic techniques were significant changes in the peak positions and chemical shifts were visualized. Mass spectral profile revealed that 1.5 (% v/v) S. capitis strain AG could completely (∼99%) remove 1000 mg/L 1,4-dioxane, when incubated with 2 µg/L tetrahydrofuran for 96 h. The toxicity of 1,4-dioxane and biotransformed products by S. capitis strain AG were tested on Artemia salina. The results of toxicity tests revealed that the metabolic products were less toxic as they exerted minimal mortality rate after 48 h exposure. Thus, this research would be the first to report the response prediction and precise tailoring of 1,4-dioxane biotransformation using S. captis strain AG.


Assuntos
Dioxanos/metabolismo , Staphylococcus capitis , Algoritmos , Biotransformação , Filogenia , Staphylococcus capitis/metabolismo
19.
J Toxicol Environ Health A ; 85(10): 414-430, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35023806

RESUMO

1,4-Dioxane (DXN) is used as solvent in different consumer products including cosmetics, paints, surfactants, and waxes. In addition, DXN is released as an unwanted contaminating by-product as a result of some reactions including ethoxylation of alcohols, which occurs with in personal care products. Consequently, DXN pollution was detected in drinking water and is considered as an environmental problem. At present, the genotoxicity effects attributed to DXN are controversial. The present study using an in vivo model organism Drosophila melanogaster aimed to determine the toxic/genotoxic, mutagenic/recombinogenic, oxidative damage as evidenced by ROS production, phenotypic alterations as well as behavioral and developmental alterations that are closely related to neuronal functions. Data demonstrated that nontoxic DXN concentration (0.1, 0.25, 0.5, or 1%) induced mutagenic (1%) and recombinogenic (0.1, 0.25, or 0.5%) effects in wing spot test and genotoxicity in hemocytes using comet assay. The nontoxic concentrations of DXN (0.1, 0.25, 0.5, or 1%) significantly increased oxidative stress, climbing behavior, thermal sensivity and abnormal phenotypic alterations. Our findings show that in contrast to in vitro exposure, DXN using an in vivo model Drosophila melanogaster this compound exerts toxic and genotoxic effects. Data suggest that additional studies using other in vivo models are thus warranted.


Assuntos
Dano ao DNA , Drosophila melanogaster , Animais , Ensaio Cometa , Dioxanos , Testes de Mutagenicidade , Mutagênicos/toxicidade , Asas de Animais
20.
Biodegradation ; 33(4): 349-371, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35553282

RESUMO

A series of single-well push-pull tests (SWPPTs) were performed to investigate the efficacy of isobutane (2-methylpropane) as a primary substrate for in situ stimulation of microorganisms able to cometabolically transform common groundwater contaminants, such as chlorinated aliphatic hydrocarbons and 1,4-dioxane (1,4-D). In biostimulation tests, the disappearance of isobutane relative to a nonreactive bromide tracer indicated an isobutane-utilizing microbial community rapidly developed in the aquifer around the test well. SWPPTs were performed as natural drift tests with first-order rates of isobutane consumption ranging from 0.4 to 1.4 day-1. Because groundwater contaminants were not present at the demonstration site, isobutene (2-methylpropene) was used as a nontoxic surrogate to demonstrate cometabolic activity in the subsurface after biostimulation. The transformation of isobutene to isobutene epoxide (2-methyl-1,2-epoxypropane) illustrates the epoxidation process previously shown for common groundwater contaminants after cometabolic transformation by alkane-utilizing bacteria. The rate and extent of isobutene consumption and the formation and transformation of isobutene epoxide were greater in the presence of isobutane, with no evidence of primary substrate inhibition. Modeled concentrations of isobutane-utilizing biomass in microcosms constructed with groundwater collected before and after each SWPPT offered additional evidence that the isobutane-utilizing microbial community was stimulated in the aquifer. Experiments in groundwater microcosms also demonstrated that the isobutane-utilizing bacteria stimulated in the subsurface could cometabolically transform a mixture of co-substrates including isobutene, 1,1-dichloroethene, cis-1,2-dichloroethene, and 1,4-D with the same co-substrate preferences as the bacterium Rhodococcus rhodochrous ATCC strain 21198 after growth on isobutane. This study demonstrated the effectiveness of isobutane as primary substrate for stimulating in situ cometabolic activity and the use of isobutene as surrogate to investigate in situ cometabolic reactions catalyzed by isobutane-stimulated bacteria.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Biodegradação Ambiental , Biotransformação , Butanos , Compostos de Epóxi , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA