Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Technol Adv Mater ; 23(1): 31-40, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35069011

RESUMO

The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are important processes for various energy devices, including polymer electrolyte fuel cells, rechargeable metal-air batteries, and water electrolyzers. We herein report the preparation of a rare metal-free and highly efficient ORR/OER electrocatalyst by calcination of a mixture of blood meal and ascidian-derived cellulose nanofibers. The obtained carbon alloys showed high ORR/OER performances and proved to be promising electrocatalysts. The carbon alloys synthesized entirely from biomass resources not only lead to a new electrocatalyst fabrication process but also contribute to CO2 reduction and the realization of a good life-cycle assessment value in fabrication of a sustainable energy device.

2.
Sci Technol Adv Mater ; 23(1): 76-119, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309252

RESUMO

The over-dependence on fossil fuels is one of the critical issues to be addressed for combating greenhouse gas emissions. Hydrogen, one of the promising alternatives to fossil fuels, is renewable, carbon-free, and non-polluting gas. The complete utilization of hydrogen in every sector ranging from small to large scale could hugely benefit in mitigating climate change. One of the key aspects of the hydrogen sector is its production via cost-effective and safe ways. Electrolysis and photocatalysis are well-known processes for hydrogen production and their efficiency relies on electrocatalysts, which are generally noble metals. The usage of noble metals as catalysts makes these processes costly and their scarcity is also a limiting factor. Metal nitrides and their porous counterparts have drawn considerable attention from researchers due to their good promise for hydrogen production. Their properties such as active metal centres, nitrogen functionalities, and porous features such as surface area, pore-volume, and tunable pore size could play an important role in electrochemical and photocatalytic hydrogen production. This review focuses on the recent developments in metal nitrides from their synthesis methods point of view. Much attention is given to the emergence of new synthesis techniques, methods, and processes of synthesizing the metal nitride nanostructures. The applications of electrochemical and photocatalytic hydrogen production are summarized. Overall, this review will provide useful information to researchers working in the field of metal nitrides and their application for hydrogen production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA