RESUMO
A major incident occurred at the Fukushima Daiichi Nuclear Power Station following the tsunami triggered by the Tohoku-Pacific Ocean Earthquake in March 2011, whereby seawater entered the torus room in the basement of the reactor building. Here, we identify and analyze the bacterial communities in the torus room water and several environmental samples. Samples of the torus room water (1 × 109 Bq137Cs/L) were collected by the Tokyo Electric Power Company Holdings from two sampling points between 30 cm and 1 m from the bottom of the room (TW1) and the bottom layer (TW2). A structural analysis of the bacterial communities based on 16S rRNA amplicon sequencing revealed that the predominant bacterial genera in TW1 and TW2 were similar. TW1 primarily contained the genus Limnobacter, a thiosulfate-oxidizing bacterium. γ-Irradiation tests on Limnobacter thiooxidans, the most closely related phylogenetically found in TW1, indicated that its radiation resistance was similar to ordinary bacteria. TW2 predominantly contained the genus Brevirhabdus, a manganese-oxidizing bacterium. Although bacterial diversity in the torus room water was lower than seawater near Fukushima, ~70% of identified genera were associated with metal corrosion. Latent environment allocation-an analytical technique that estimates habitat distributions and co-detection analyses-revealed that the microbial communities in the torus room water originated from a distinct blend of natural marine microbial and artificial bacterial communities typical of biofilms, sludge, and wastewater. Understanding the specific bacteria linked to metal corrosion in damaged plants is important for advancing decommissioning efforts. IMPORTANCE: In the context of nuclear power station decommissioning, the proliferation of microorganisms within the reactor and piping systems constitutes a formidable challenge. Therefore, the identification of microbial communities in such environments is of paramount importance. In the aftermath of the Fukushima Daiichi Nuclear Power Station accident, microbial community analysis was conducted on environmental samples collected mainly outside the site. However, analyses using samples from on-site areas, including adjacent soil and seawater, were not performed. This study represents the first comprehensive analysis of microbial communities, utilizing meta 16S amplicon sequencing, with a focus on environmental samples collected from the radioactive element-containing water in the torus room, including the surrounding environments. Some of the identified microbial genera are shared with those previously identified in spent nuclear fuel pools in countries such as France and Brazil. Moreover, our discussion in this paper elucidates the correlation of many of these bacteria with metal corrosion.
Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos da Água , Água/análise , Radioisótopos de Césio/análise , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , Poluentes Radioativos da Água/análise , JapãoRESUMO
Rodents are key reservoirs of zoonotic pathogens and play an important role in disease transmission to humans. Importantly, anthropogenic land-use change has been found to increase the abundance of rodents that thrive in human-built environments (synanthropic rodents), particularly rodent reservoirs of zoonotic disease. Anthropogenic environments also affect the microbiome of synanthropic wildlife, influencing wildlife health and potentially introducing novel pathogens. Our objective was to examine the effect of agricultural development and synanthropic habitat on microbiome diversity and the prevalence of zoonotic bacterial pathogens in wild Peromyscus mice to better understand the role of these rodents in pathogen maintenance and transmission. We conducted 16S amplicon sequencing on faecal samples using long-read nanopore sequencing technology to characterize the rodent microbiome. We compared microbiome diversity and composition between forest and synanthropic habitats in agricultural and undeveloped landscapes and screened for putative pathogenic bacteria. Microbiome richness, diversity, and evenness were higher in the agricultural landscape and synanthropic habitat compared to undeveloped-forest habitat. Microbiome composition also differed significantly between agricultural and undeveloped landscapes and forest and synanthropic habitats. We detected overall low diversity and abundance of putative pathogenic bacteria, though putative pathogens were more likely to be found in mice from the agricultural landscape. Our findings show that landscape- and habitat-level anthropogenic factors affect Peromyscus microbiomes and suggest that landscape-level agricultural development may be important to predict zoonotic pathogen prevalence. Ultimately, understanding how anthropogenic land-use change and synanthropy affect rodent microbiomes and pathogen prevalence is important to managing transmission of rodent-borne zoonotic diseases to humans.
Assuntos
Peromyscus , Doenças dos Roedores , Animais , Humanos , Prevalência , Ecossistema , Roedores , Bactérias/genética , Doenças dos Roedores/microbiologia , AgriculturaRESUMO
The present study was conducted to study the composition of gut microbiome in the advanced fingerling and fingerling stage of striped pangasius catfish and catla during healthy and diseased conditions. Healthy pangasius and catla fishes were obtained from commercial farms and injected with the LD50 dose of A. hydrophila. The intestinal samples from the control and injected group were collected and pooled for 16 s metagenomic analysis. Community analysis was performed by targeting the 16 s rRNA gene to explore and compare the gut microbiota composition of these fishes. The operational taxonomic units (OTUs) consisted of four major phyla: Bacteroidia, Proteobacteria, Firmicutes, and Actinobacteria. Alpha and beta diversity indices were carried out to understand the diversity of microbes within and between a sample. While comparing the advanced fingerling and fingerling stage gut microbiome of Pangasius catfish, the dominance of Proteobacteria was found in fingerlings, whereas Firmicutes and Bacteroides were found in advanced fingerlings. In catla, Proteobacteria and Bacteroides were predominant. Taxonomic abundance of the microbiota in control and diseased Pangasius and catla fishes at phylum, class, order, family, genus, and species levels were also depicted. The present study is the first of its kind, and it will help to identify the diversity of novel potential bacterial species involved in disease protection of fishes. It can lead to the development of sustainable prophylactic measures against (re-)emerging bacterial diseases in aquaculture.
Assuntos
Bactérias , Peixes-Gato , Doenças dos Peixes , Microbioma Gastrointestinal , RNA Ribossômico 16S , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Peixes-Gato/microbiologia , Doenças dos Peixes/microbiologia , Filogenia , Aeromonas hydrophila/isolamento & purificação , Aeromonas hydrophila/genética , Aeromonas hydrophila/classificação , Aeromonas hydrophila/patogenicidade , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/microbiologia , Metagenômica , DNA Bacteriano/genéticaRESUMO
Leach bed reactors (LBRs) are dry anaerobic systems that can handle feedstocks with high solid content, like chicken manure, with minimal water addition. In this study, the chicken manure was mixed with zeolite, a novel addition, and packed in the LBR to improve biogas production. The resulting leachate was then processed in a continuous stirred tank reactor (CSTR), where most of the methane was produced. The supernatant of the CSTR was returned to the LBR. The batch mode operation of the LBR led to a varying methane production rate (MPR) with a peak in the beginning of each batch cycle when the leachate was rich in organic matter. Comparing the MPR in both systems, the peaks in the zeolite system were higher and more acute than in the control system, which was under stress, as indicated by the acetate accumulation at 2328 mg L-1. Moreover, the presence of zeolite in the LBR played a crucial role, increasing the overall methane yield from 0.142 (control experiment) to 0.171 NL CH4 per g of volatile solids of chicken manure entering the system at a solid retention time of 14 d. Zeolite also improved the stability of the system. The ammonia concentration increased gradually due to the little water entering the system and reached 3220 mg L-1 (control system) and 2730 mg L-1 (zeolite system) at the end of the experiment. It seems that zeolite favored the accumulation of the ammonia at a lower rate (14.0 mg L-1 d-1) compared to the control experiment (17.3 mg L-1 d-1). The microbial analysis of the CSTR fed on the leachate from the LBR amended with zeolite showed a higher relative abundance of Methanosaeta (83.6%) compared to the control experiment (69.1%). Both CSTRs established significantly different bacterial profiles from the inoculum after 120 days of operation (p < 0.05). Regarding the archaeal communities, there were no significant statistical differences between the CSTRs and the inoculum (p > 0.05).
Assuntos
Biodegradação Ambiental , Galinhas , Esterco , Metano , Zeolitas , Zeolitas/química , Animais , Anaerobiose , Metano/metabolismo , Metano/química , Reatores Biológicos , Biocombustíveis , Amônia/química , Amônia/metabolismoRESUMO
OBJECTIVE: Workers in the healthcare sector are exposed to a multitude of bacterial genera. The location of their work contributes significantly to shaping personal microbiomes. In this study, we investigated the role of the workspace on the nasal bacteriome of staff working in a healthcare-associated research facility. METHODS: The anterior nares of 10 staff working in different laboratories on the ground and first floor of the research facility were aseptically swabbed. Genomic DNA from each sample was used to amplify the V3 and V4 regions of the 16S rRNA gene. The amplified products were sequenced using the MiSeq sequencer (Illumina). Operational taxonomic units were filtered through MG-RAST v.3.6. Taxonomic profiling and visualizations were performed in MicrobiomeAnalyst v2.0. RESULTS: The Wilcoxson Sum test at median abundances (p < 0.05) indicated that seven taxa (Micromonosporaceae, Micromonospora, Lactobacillaceae, Lactobacillus, Betaproteobacteria, Burkholderiales, Pectobacterium) were significantly diverse between ground-floor and first-floor workers. The analysis of similarity coefficient was 0.412 (p < 0.03) between the ground and the first-floor workers. Random forest analysis predicted 15 features that were significantly different (p < 0.05) in individuals working in different laboratories. Species richness and evenness also differed according to the placement of individuals in respective laboratories. CONCLUSION: These findings add to the knowledge that the healthcare support staff are at a speculated occupational risk. A slight shift in the abundances of bacterial genera and species might lead to unwanted consequences. Continual monitoring is thus warranted.
Assuntos
Microbiota , Humanos , RNA Ribossômico 16S/genética , Microbiota/genética , Bactérias/genética , Pessoal de Saúde , Atenção à SaúdeRESUMO
OBJECTIVE: The health of oral cavity is considered as an important indicator of aging. Oral microbiota is highly associated with the oral health, while the variation of oral microbiome in elderly population and characteristic microbes associated with aging remain unclear. SUBJECTS AND METHODS: In this study, 130 elderly subjects were recruited and divided into 3 groups according to their age: Stage I group (65 ≤ years < 70), Stage II group (70 ≤ years < 75), and Stage III group (75 ≤ years < 80). Their physiological indices were analyzed with using Illumina MiSeq platform and the oral microbiome was determined by high-throughput sequencing. RESULTS: Along with aging, the level of fasting blood glucose, systolic pressure and monocytes are significantly increased. No significant difference was detected on the whole structure of the oral microbiome among groups. While using Metastats and Spearman's correlation analysis, specific bacteria were identified as potential age- or health index-related bacterial genera including Fusobacterium, Parvimonas, Porphyromonas, Aminobacter, Collinsella, Clostridium and Acinetobacter. CONCLUSION: Our study revealed that the composition structure of salivary microbiota in elderly population was relatively stable while specific bacteria were correlated with age and health status, which is promising to be served as health indicators of the elderly after further exploration.
Assuntos
Envelhecimento , Nível de Saúde , Microbiota , Boca , Saliva , Humanos , Idoso , Masculino , Feminino , Envelhecimento/fisiologia , Idoso de 80 Anos ou mais , Saliva/microbiologia , Boca/microbiologia , China , Glicemia/análise , Pressão Sanguínea/fisiologia , Saúde Bucal , Monócitos/microbiologia , População do Leste AsiáticoRESUMO
BACKGROUND: The status of dental caries is closely related to changes in the oral microbiome. In this study, we compared the diversity and structure of the dental plaque microbiome in children with severe early childhood caries (S-ECC) before and after general anaesthesia and outpatient treatment. METHODS: Forty children aged 3 to 5 years with S-ECC who had completed whole-mouth dental treatment under general anaesthesia (C1) or in outpatient settings (C2) were selected, 20 in each group. The basic information and oral health status of the children were recorded, and the microbial community structure and diversity of dental plaque before treatment (C1, C2), the day after treatment(C2_0D), 7 days after treatment (C1_7D, C2_7D), 1 month after treatment (C1_1M, C2_1M), and 3 months after treatment (C1_3M, C2_3M) were analysed via 16 S rRNA high-throughput sequencing technology. RESULTS: (1) The alpha diversity test showed that the flora richness in the multiappointment group was significantly greater at posttreatment than at pretreatment (P < 0.05), and the remaining alpha diversity index did not significantly differ between the 2 groups (P > 0.05). The beta diversity analysis revealed that the flora structures of the C1_7D group and the C2_3M group were significantly different from those of the other time points within the respective groups (P < 0.05). (2) The core flora existed in both the pre- and posttreatment groups, and the proportion of their flora abundance could be altered depending on the caries status of the children in both groups. Leptotrichia abundance was significantly (P < 0.05) lower at 7 days posttreatment in both the single- and multiappointment groups. Corynebacterium and Corynebacterium_matruchotii were significantly more abundant in the C1_1M and C1_3M groups than in the C1 and C1_7D groups (P < 0.05). Streptococcus, Haemophilus and Haemophilus_parainfluenzae were significantly more abundant in the C1_7D group than in the other groups (P < 0.05). CONCLUSION: A single session of treatment under general anaesthesia can cause dramatic changes in the microbial community structure and composition within 7 days after treatment, whereas treatment over multiple appointments may cause slow changes in oral flora diversity.
Assuntos
Cárie Dentária , Placa Dentária , Humanos , Placa Dentária/microbiologia , Cárie Dentária/microbiologia , Cárie Dentária/terapia , Pré-Escolar , Masculino , Feminino , Microbiota , Anestesia Geral , RNA Ribossômico 16SRESUMO
Agriculture is the most dominant land use globally and is projected to increase in the future to support a growing human population but also threatens ecosystem structure and services. Bacteria mediate numerous biogeochemical pathways within ecosystems. Therefore, identifying linkages between stressors associated with agricultural land use and responses of bacterial diversity is an important step in understanding and improving resource management. Here, we use the Mississippi Alluvial Plain (MAP) ecoregion, a highly modified agroecosystem, as a case study to better understand agriculturally associated drivers of stream bacterial diversity and assembly mechanisms. In the MAP, we found that planktonic bacterial communities were strongly influenced by salinity. Tolerant taxa increased with increasing ion concentrations, likely driving homogenous selection which accounted for ~90% of assembly processes. Sediment bacterial phylogenetic diversity increased with increasing agricultural land use and was influenced by sediment particle size, with assembly mechanisms shifting from homogenous to variable selection as differences in median particle size increased. Within individual streams, sediment heterogeneity was correlated with bacterial diversity and a subsidy-stress relationship along the particle size gradient was observed. Planktonic and sediment communities within the same stream also diverged as sediment particle size decreased. Nutrients including carbon, nitrogen, and phosphorus, which tend to be elevated in agroecosystems, were also associated with detectable shifts in bacterial community structure. Collectively, our results establish that two understudied variables, salinity and sediment texture, are the primary drivers of bacterial diversity within the studied agroecosystem, whereas nutrients are secondary drivers. Although numerous macrobiological communities respond negatively, we observed increasing bacterial diversity in response to agricultural stressors including salinization and sedimentation. Elevated taxonomic and phylogenetic bacterial diversity likely increases the probability of detecting community responses to stressors. Thus, bacteria community responses may be more reliable for establishing water quality goals within highly modified agroecosystems that have experienced shifting baselines.
Assuntos
Ecossistema , Rios , Humanos , Rios/microbiologia , Plâncton , Filogenia , Bactérias , Agricultura , Sedimentos GeológicosRESUMO
This in vivo study in mice addresses the relationship between the biodiversity of the microbiota and the levels of S100B, a protein present in enteroglial cells, but also in foods such as milk. A positive significant correlation was observed between S100B levels and Shannon values, which was reduced after treatment with Pentamidine, an inhibitor of S100B function, indicating that the correlation was influenced by the modulation of S100B activity. Using the bootstrap average method based on the distribution of the S100B concentration, three groups were identified, exhibiting a significant difference between the microbial profiles. Operational taxonomic units, when analyzed by SIMPER analysis, showed that genera regarded to be eubiotic were mainly concentrated in the intermediate group, while genera potentially harboring pathobionts often appeared to be more concentrated in groups where the S100B amounts were very low or high. Finally, in a pilot experiment, S100B was administered orally, and the microbial profiles appeared to be modified accordingly. These data may open novel perspectives involving the possibility of S100B-mediated regulation in the intestinal microbiota.
Assuntos
Microbioma Gastrointestinal , Microbiota , Camundongos , Animais , Pentamidina/farmacologia , Biodiversidade , RNA Ribossômico 16S/genética , Subunidade beta da Proteína Ligante de Cálcio S100RESUMO
Photoautotrophic soil cyanobacteria play essential ecological roles and are known to exhibit large changes in their diversity and abundance throughout early succession. However, much less is known about how and why soil cyanobacterial communities change as soil develops over centuries and millennia, and the effects that vegetation have on such communities. We combined an extensive field survey, including 16 global soil chronosequences across contrasting ecosystems (from deserts to tropical forests), with molecular analyses to investigate how the diversity and abundance of photosynthetic and nonphotosynthetic soil cyanobacteria are affected by vegetation change during soil development, over time periods from hundreds to thousands of years. We show that, in most chronosequences, the abundance, species richness and community composition of soil cyanobacteria are relatively stable as soil develops (from centuries to millennia). Regardless of soil age, forest chronosequences were consistently dominated by nonphotosynthetic cyanobacteria (Vampirovibrionia), while grasslands and shrublands were dominated by photosynthetic cyanobacteria. Chronosequences undergoing drastic vegetation shifts (e.g. transitions from grasslands to forests) experienced significant changes in the composition of soil cyanobacterial communities. Our results advance our understanding of the ecology of cyanobacterial classes, and of the understudied nonphotosynthetic cyanobacteria in particular, and highlight the key role of vegetation as a major driver of their temporal dynamics as soil develops.
Assuntos
Cianobactérias , Solo , Ecossistema , Florestas , Microbiologia do SoloRESUMO
AIMS: This work aims to characterize the microbial diversity of the encrusting sponge Cliona varians, a pore-forming and coral reef bioeroding marine sponge of emerging spread related to ocean acidification. METHODS AND RESULTS: We analysed the microbiome composition by 16S V4 amplicon next-generation sequencing in a community of the bioeroding coral reef encrusting/excavating marine sponge Cliona varians thriving at the Southern Caribbean Sea. About 87.21% and 6.76% of the sequences retrieved were assigned to the domain Bacteria and Archaea. The most predominant operational taxonomic units were classified as members of the order Rhizobiales and family Nitrosopumilaceae, representing members of not yet characterized genera. Features found strictly conserved in the strain/genomic representatives reported in those microbial taxa are nitrogen fixation and transformation. CONCLUSION: Our results suggest, in accordance with recent results, that these microbiome members and associated functions could be contributing to the biological fitness of the sponge to be able to colonize and bioerode in environments with low access and scarce availability of nitrogen sources. SIGNIFICANCE AND IMPACT OF STUDY: Coral reefs bioresources such as sponge holobionts are intriguing and complex ecosystem units. This study contributes to the knowledge of how C. varians microbiota is composed or shaped, which is crucial to understand its ecological functions.
Assuntos
Microbiota , Poríferos , Animais , Archaea , Região do Caribe , Concentração de Íons de Hidrogênio , Microbiota/genética , Poríferos/microbiologia , Água do Mar/microbiologiaRESUMO
AIM: To determine the impact of an acute, pulse disturbance of nutrients from manure on freshwater sediment microbiomes in an experimental system. METHODS AND RESULTS: A controlled freshwater mesocosm experiment was designed to compare the effect of disturbance from nutrients derived from sterile manure (SM), disturbance from equivalent concentrations of laboratory-derived nutrients, and a nondisturbed control on freshwater sediment microbial community composition and function using 16S rRNA amplicon sequencing. Sediment microbiomes impacted by nutrients from SM showed no sign of compositional recovery after 28 days but those impacted by laboratory-derived chemicals lead to a new steady-state (p < 0.05). Carbon and nitrate sources within disturbed mesocosms were the primary drivers of altered microbial community composition. Additionally, multiple potential pathogens (based on exact sequence matching at the species level) were enriched in mesocosms treated with SM. CONCLUSIONS: Nutrient disturbance from SM, in the absence of the manure microbial community, alters the microbiome of sediments without recovery after 28 days and enriches potential pathogens. SIGNIFICANCE AND IMPACT OF THE STUDY: These results suggest manure land application practices should be re-evaluated to account for impact of nutrient disturbance on environmental microbiomes in addition to the impact of the manure microbial community.
Assuntos
Esterco , Microbiota , Água Doce , Nutrientes , RNA Ribossômico 16S/genéticaRESUMO
For centuries, multicellular organisms have lived in symbiosis with microorganisms. The interaction with microorganisms has been shown to be very beneficial for humans and animals. During a natural birth, the initial inoculation with bacteria occurs when the neonate passes through the birth canal. Colostrum and milk intake are associated with the acquisition of a healthy gut flora. However, little is known about the microbial composition of bovine colostrum and the possible beneficial effects for the neonatal calf. In this prospective cohort study, the microbial composition of first-milking colostrum was analyzed in 62 Holstein Friesian (HF) and 46 Belgian Blue (BB) cows by performing amplicon sequencing of the bacterial V3-V4 region of the 16S rRNA gene. Calves received, 3 times, 2 L of their dam's colostrum within 24 h after birth. Associations between colostral microbial composition and its IgG concentration, as well as each calf's serum IgG levels, were analyzed. Colostrum samples were dominated by the phyla Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria. The 10 most abundant genera in the complete data set were Acinetobacter (16.2%), Pseudomonas (15.1%), a genus belonging to the Enterobacteriaceae family (4.9%), Lactococcus (4.0%), Chryseobacterium (3.9%), Staphylococcus (3.6%), Proteus (1.9%), Streptococcus (1.8%), Enterococcus (1.7%), and Enhydrobacter (1.5%). The remaining genera (other than these top 10) accounted for 36.5% of the counts, and another 8.7% were unidentified. Bacterial diversity differed significantly between HF and BB samples. Within each breed, several genera were found to be differentially abundant between colostrum of different quality. Moreover, in HF, the bacterial composition of colostrum leading to low serum IgG levels in the calf differed from that of colostrum leading to high serum IgG levels. Results of the present study indicate that the microbes present in colostrum are associated with transfer of passive immunity in neonatal calves.
Assuntos
Colostro , Imunoglobulina G , Animais , Animais Recém-Nascidos , Bélgica , Bovinos , Feminino , Humanos , Gravidez , Estudos Prospectivos , RNA Ribossômico 16SRESUMO
There is increasing evidence for the importance of the gut microbiome in human health and disease. Traditional and modern technologies - from cell culture to next generation sequencing - have facilitated these advances in knowledge. Each of the tools employed in measuring the microbiome exhibits unique capabilities that may be leveraged for clinical diagnostics. However, much still needs to be done to standardize the language and metrics by which a microbiome is characterized. Here we review the capabilities of gut microbiome-based diagnostics, review selected examples, and discuss the outlook towards clinical application.
Assuntos
Técnicas de Laboratório Clínico , Microbioma Gastrointestinal/genética , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , MetagenômicaRESUMO
Neonatal sepsis (NS) kills 750,000 infants every year. Effectively treating NS requires timely diagnosis and antimicrobial therapy matched to the causative pathogens, but most blood cultures for suspected NS do not recover a causative pathogen. We refer to these suspected but unidentified pathogens as microbial dark matter. Given these low culture recovery rates, many non-culture-based technologies are being explored to diagnose NS, including PCR, 16S amplicon sequencing, and whole metagenomic sequencing. However, few of these newer technologies are scalable or sustainable globally. To reduce worldwide deaths from NS, one possibility may be performing population-wide pathogen discovery. Because pathogen transmission patterns can vary across space and time, computational models can be built to predict the pathogens responsible for NS by region and season. This approach could help to optimally treat patients, decreasing deaths from NS and increasing antimicrobial stewardship until effective diagnostics that are scalable become available globally.
Assuntos
Bactérias , Sepse Neonatal , Antibacterianos/uso terapêutico , Bactérias/classificação , Bactérias/isolamento & purificação , Hemocultura , Simulação por Computador , Humanos , Lactente , Sepse Neonatal/diagnóstico , Sepse Neonatal/tratamento farmacológico , Sepse Neonatal/microbiologia , Reação em Cadeia da PolimeraseRESUMO
Understanding the bacterial community profile through poultry processing could help the industry to produce better poultry products. In this study, 10 chicken carcasses were randomly sampled from before and after scalding, before and after immersion chilling, and after air chilling each through a modern commercial processing line, along with the contents of 10 caeca. The sampled processing line effectively reduced the bacterial counts byâ¯>â¯4.6 Log10â¯CFU/ml for each of Total Viable Counts, Escherichia coli and Campylobacter. However, the metagenomics results suggested that Lactobacillus, Staphylococcus and unclassified Lachnospiraceae persisted at all sampling stages. Pseudomonas, Paeniglutamicibacter, Chryseobacterium and Pseudarthrobacter comprised 47.2% in the bacterial community on samples after air chilling compared to 0.3% on samples after immersion chilling, whereas TVCs were the same. Overall, the current interventions of the investigated poultry processing line were unable to eliminate persistence of certain foodborne pathogens, despite a significant reduction of the overall bacterial counts. Chilling is an important controlling point in contamination/cross-contamination, particularly extended air chilling. Lastly, the large presence of Pseudomonas on chickens after air chilling may lead to downstream spoilage related issues, which needs more investigation to explore quantitatively the effect on the shelf life of poultry products.
Assuntos
Bactérias/crescimento & desenvolvimento , Biodiversidade , Galinhas/microbiologia , Produtos Avícolas/microbiologia , Animais , Austrália , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Contagem de Colônia Microbiana , Contaminação de Alimentos/análise , Manipulação de Alimentos , Produtos Avícolas/análiseRESUMO
Jellyfish blooms are frequent and widespread in coastal areas worldwide, often associated with significant ecological and socio-economic consequences. Recent studies have also suggested cnidarian jellyfish may act as vectors of bacterial pathogens. The scyphomedusa Rhizostoma pulmo is an outbreak-forming jellyfish widely occurring across the Mediterranean basin. Using combination of culture-based approaches and a high-throughput amplicon sequencing (HTS), and based on available knowledge on a warm-affinity jellyfish-associated microbiome, we compared the microbial community associated with R. pulmo adult jellyfish in the Gulf of Taranto (Ionian Sea) between summer (July 2016) and winter (February 2017) sampling periods. The jellyfish-associated microbiota was investigated in three distinct compartments, namely umbrella, oral arms, and the mucus secretion. Actinobacteria, Bacteroidetes, Chlamydiae, Cyanobacteria, Deinococcus-Thermus, Firmicutes, Fusobacteria, Planctomycetes, Proteobacteria, Rhodothermaeota, Spirochaetes, Tenericutes, and Thaumarchaeota were the phyla isolated from all the three R. pulmo compartments in the sampling times. In particular, the main genera Mycoplasma and Spiroplasma, belonging to the class Mollicutes (phylum Tenericutes), have been identified in all the three jellyfish compartments. The taxonomic microbial data were coupled with metabolic profiles resulting from the utilization of 31 different carbon sources by the BIOLOG Eco-Plate system. Microorganisms associated with mucus are characterized by great diversity. The counts of culturable heterotrophic bacteria and potential metabolic activities are also remarkable. Results are discussed in terms of R. pulmo ecology, the potential health hazard for marine and human life as well as the potential biotechnological applications related to the associated microbiome.
Assuntos
Bactérias/classificação , Microbiota , Cifozoários/microbiologia , Animais , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Ribotipagem , Estações do Ano , TemperaturaRESUMO
Octylphenol (OP) is a widely distributed endocrine disrupting chemical (EDC), and can be commonly found in various and diverse environmental media. Previous studies have reported that OP exposure could cause many adverse effects on aquatic animals. However, knowledge concerning the impact of OP on lipid metabolism in amphibians was still limited. In our study, Rana chensinensis tadpoles were exposed to different OP concentrations (0, 10-8, 10-7 and 10-6 mol/L) from the Gosner stage (Gs) 25-38. The RNA-seq analysis of tadpole intestines was explored by RNA-seq, and six differentially expressed genes (DEGs) related to the fat digestion and absorption were validated by RT-qPCR. Moreover, we used 16s amplicon sequencing to evaluate effects of OP on intestinal microbiome in tadpoles, further determining the variations of lipid metabolism. Our results revealed that OP exposure influenced gene expression levels related to fat digestion and absorption and led to alteration of structure and composition of intestinal microbiome. At the phylum level, the Firmicutes/Bacteroidetes ratio was gradually decreased in OP exposure groups, which disrupted lipid metabolism. According to the results of intestinal microbial functional prediction, OP exposure interfered with metabolic function and increased risk of disease. These data provide us with powerful resources to assess the effects of OP on lipid metabolism by integrating RNAseq and 16s amplicon sequencing analysis of intestinal tract and intestinal microbiome.
Assuntos
Disruptores Endócrinos/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Larva/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fenóis/toxicidade , Animais , Classificação , Microbioma Gastrointestinal/genética , Expressão Gênica/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Intestinos/microbiologia , Larva/metabolismo , Metabolismo dos Lipídeos/genética , Anotação de Sequência Molecular , RNA/genética , RanidaeRESUMO
Wetland ecosystems have a disproportionally large influence on the global carbon cycle. They can act as carbon sinks or sources depending upon their location, type, and condition. Rehabilitation of wetlands is gaining popularity as a nature-based approach to helping mitigate climate change; however, few studies have empirically tested the carbon benefits of wetland restoration, especially in freshwater environments. Here we investigated the effects of passive rehabilitation (i.e. fencing and agricultural release) of 16 semi-arid rain-filled freshwater wetlands in southeastern Australia. Eight control sites were compared with older (>10 year) or newer (2-5 year) rehabilitated sites, dominated by graminoids or eucalypts. Carbon stocks (soils and plant biomass), and emissions (carbon dioxide - CO2; and methane - CH4) were sampled across three seasons, representing natural filling and drawdown, and soil microbial communities were sampled in spring. We found no significant difference in soil carbon or greenhouse gas emissions between rehabilitated and control sites, however, plant biomass was significantly higher in older rehabilitated sites. Wetland carbon stocks were 19.21 t Corg ha-1 and 2.84 t Corg ha-1 for soils (top 20 cm; n = 137) and plant biomass (n = 288), respectively. Hydrology was a strong driver of wetland greenhouse gas emissions. Diffusive fluxes (n = 356) averaged 117.63 mmol CO2 m2 d-1 and 2.98 mmol CH4 m2 d-1 when wet, and 124.01 mmol CO2 m2 d-1 and -0.41 mmol CH4 m2 d-1 when dry. Soil microbial community richness was nearly 2-fold higher during the wet phase than the dry phase, including relative increases in Nitrososphaerales, Myxococcales and Koribacteraceae and methanogens Methanobacteriales. Vegetation type significantly influenced soil carbon, aboveground carbon, and greenhouse gas emissions. Overall, our results suggest that passive rehabilitation of rain-filled wetlands, while valuable for biodiversity and habitat provisioning, is ineffective for increasing carbon gains within 20 years. Carbon offsetting opportunities may be better in systems with faster sediment accretion. Active rehabilitation methods, particularly that reinstate the natural hydrology of drained wetlands, should also be considered.
Assuntos
Ecossistema , Áreas Alagadas , Austrália , Dióxido de Carbono , Metano , Chuva , SoloRESUMO
Short and medium-chain fatty acids (SCFA and MCFA, respectively) are commonly used as feed additives in piglets to promote health and prevent post-weaning diarrhoea. Considering that the mechanism and site of action of these fatty acids can differ, a combined supplementation could result in a synergistic action. Considering this, it was aimed to assess the potential of two new in-feed additives based on butyrate or heptanoate, protected with sodium salts of MCFA from coconut distillates, against enterotoxigenic Escherichia coli (ETEC) F4+ using an experimental disease model. Two independent trials were performed in 48 early-weaned piglets fed a control diet (CTR) or a diet supplemented with MCFA-protected sodium butyrate (BUT+; Trial 1) or sodium heptanoate (HPT+; Trial 2). After 1 week of adaptation, piglets were challenged with a single oral inoculum of ETEC F4+ (minimum 1.4 · 109 cfu). One animal per pen was euthanised on days 4 and 8 post-inoculation (PI) and the following variables assessed: growth performance, clinical signs, gut fermentation, intestinal morphology, inflammatory mediators, pathogen excretion and colon microbiota. None of the additives recovered growth performance or reduced diarrhoea when compared to the respective negative controls. However, both elicited different responses against ETEC F4+. The BUT+ additive did not lead to reduce E. coli F4 colonisation but enterobacterial counts and goblet cell numbers in the ileum were increased on day 8 PI and this followed higher serum TNF-α concentrations on day 4 PI. The Firmicutes:Bacteroidetes ratio was nevertheless increased. Findings in the HPT+ treatment trial included fewer animals featuring E. coli F4 in the colon and reduced Enterobacteriaceae (determined by 16S RNA sequencing) on day 4 PI. In addition, while goblet cell numbers were lower on day 8 PI, total SCFA levels were reduced in the colon. Results indicate the efficacy of MCFA-protected heptanoate against ETEC F4+ and emphasise the potential trophic effect of MCFA-protected butyrate on the intestinal epithelium likely reinforcing the gut barrier.