Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 353
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Neuroimage ; 293: 120619, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679186

RESUMO

Catecholamines and amino acid transmitter systems are known to interact, the exact links and their impact on cognitive control functions have however remained unclear. Using a multi-modal imaging approach combining EEG and proton-magnetic resonance spectroscopy (1H-MRS), we investigated the effect of different degrees of pharmacological catecholaminergic enhancement onto theta band activity (TBA) as a measure of interference control during response inhibition and execution. It was central to our study to evaluate the predictive impact of in-vivo baseline GABA+ concentrations in the striatum, the anterior cingulate cortex (ACC) and the supplemental motor area (SMA) of healthy adults under varying degrees of methylphenidate (MPH) stimulation. We provide evidence for a predictive interrelation of baseline GABA+ concentrations in cognitive control relevant brain areas onto task-induced TBA during response control stimulated with MPH. Baseline GABA+ concentrations in the ACC, the striatum, and the SMA had a differential impact on predicting interference control-related TBA in response execution trials. GABA+ concentrations in the ACC appeared to be specifically important for TBA modulations when the cognitive effort needed for interference control was high - that is when no prior task experience exists, or in the absence of catecholaminergic enhancement with MPH. The study highlights the predictive role of baseline GABA+ concentrations in key brain areas influencing cognitive control and responsiveness to catecholaminergic enhancement, particularly in high-effort scenarios.


Assuntos
Catecolaminas , Cognição , Eletroencefalografia , Metilfenidato , Espectroscopia de Prótons por Ressonância Magnética , Ácido gama-Aminobutírico , Humanos , Ácido gama-Aminobutírico/metabolismo , Masculino , Adulto , Feminino , Adulto Jovem , Espectroscopia de Prótons por Ressonância Magnética/métodos , Catecolaminas/metabolismo , Metilfenidato/farmacologia , Eletroencefalografia/métodos , Cognição/fisiologia , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Giro do Cíngulo/metabolismo , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/efeitos dos fármacos , Ritmo Teta/fisiologia , Ritmo Teta/efeitos dos fármacos , Função Executiva/fisiologia , Função Executiva/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia
2.
J Transl Med ; 22(1): 622, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965536

RESUMO

BACKGROUND: Inhibition of kinases is the ever-expanding therapeutic approach to various types of cancer. Typically, assessment of the treatment response is accomplished by standard, volumetric imaging procedures, performed weeks to months after the onset of treatment, given the predominantly cytostatic nature of the kinase inhibitors, at least when used as single agents. Therefore, there is a great clinical need to develop new monitoring approaches to detect the response to kinase inhibition much more promptly. Noninvasive 1H magnetic resonance spectroscopy (MRS) can measure in vitro and in vivo concentration of key metabolites which may potentially serve as biomarkers of response to kinase inhibition. METHODS: We employed mantle cell lymphoma (MCL) cell lines demonstrating markedly diverse sensitivity of inhibition of Bruton's tyrosine kinase (BTK) regarding their growth and studied in-depth effects of the inhibition on various aspects of cell metabolism including metabolite synthesis using metabolomics, glucose and oxidative metabolism by Seahorse XF technology, and concentration of index metabolites lactate, alanine, total choline and taurine by 1H MRS. RESULTS: Effective BTK inhibition profoundly suppressed key cell metabolic pathways, foremost pyrimidine and purine synthesis, the citrate (TCA) cycle, glycolysis, and pyruvate and glutamine/alanine metabolism. It also inhibited glycolysis and amino acid-related oxidative metabolism. Finally, it profoundly and quickly decreased concentration of lactate (a product of mainly glycolysis) and alanine (an indicator of amino acid metabolism) and, less universally total choline both in vitro and in vivo, in the MCL xenotransplant model. The decrease correlated directly with the degree of inhibition of lymphoma cell expansion and tumor growth. CONCLUSIONS: Our results indicate that BTK inhibition exerts a broad and profound suppressive effect on cell metabolism and that the affected index metabolites such as lactate, alanine may serve as early, sensitive, and reliable biomarkers of inhibition in lymphoma patients detectable by noninvasive MRS-based imaging method. This kind of imaging-based detection may also be applicable to other kinase inhibitors, as well as diverse lymphoid and non-lymphoid malignancies.


Assuntos
Tirosina Quinase da Agamaglobulinemia , Linfoma de Célula do Manto , Inibidores de Proteínas Quinases , Humanos , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Animais , Tirosina Quinase da Agamaglobulinemia/metabolismo , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Linfoma de Célula do Manto/metabolismo , Linfoma de Célula do Manto/patologia , Linfoma de Célula do Manto/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos , Biomarcadores/metabolismo
3.
Magn Reson Med ; 92(6): 2284-2293, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39044608

RESUMO

PURPOSE: The purpose of this study was to determine the effect of acute nicotinamide riboside (NR) supplementation on cerebral nicotinamide adenine dinucleotide (NAD+) levels in the human brain in vivo by means of downfield proton MRS (DF 1H MRS). METHODS: DF 1H MRS was performed on 10 healthy volunteers in a 7.0 T MRI scanner with spectrally selective excitation and spatially selective localization to determine cerebral NAD+ levels on two back-to-back days: once after an overnight fast (baseline) and once 4 h after oral ingestion of nicotinamide riboside (900 mg). Additionally, two more baseline scans were performed following the same paradigm to assess test-retest reliability of the NAD+ levels in the absence of NR. RESULTS: NR supplementation increased mean NAD+ concentration compared to the baseline (0.458 ± 0.053 vs. 0.392 ± 0.058 mM; p < 0.001). The additional two baseline scans demonstrated no differences in mean NAD+ concentrations (0.425 ± 0.118 vs. 0.405 ± 0.082 mM; p = 0.45), and no difference from the first baseline scan (F(2, 16) = 0.907; p = 0.424). CONCLUSION: These preliminary results confirm that acute NR supplementation increases cerebral NAD+ levels in healthy human volunteers and shows the promise of DF 1H MRS utility for robust detection of NAD+ in humans in vivo.


Assuntos
Encéfalo , Suplementos Nutricionais , NAD , Niacinamida , Compostos de Piridínio , Humanos , Niacinamida/análogos & derivados , NAD/metabolismo , Masculino , Compostos de Piridínio/farmacocinética , Adulto , Feminino , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Reprodutibilidade dos Testes , Adulto Jovem , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética
4.
Magn Reson Med ; 91(3): 886-895, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38010083

RESUMO

PURPOSE: Application of highly selective editing RF pulses provides a means of minimizing co-editing of contaminants in J-difference MRS (MEGA), but it causes reduction in editing yield. We examined the flip angles (FAs) of narrow-band editing pulses to maximize the lactate edited signal with minimal co-editing of threonine. METHODS: The effect of editing-pulse FA on the editing performance was examined, with numerical and phantom analyses, for bandwidths of 17.6-300 Hz in MEGA-PRESS editing of lactate at 3T. The FA and envelope of 46 ms Gaussian editing pulses were tailored to maximize the lactate edited signal at 1.3 ppm and minimize co-editing of threonine. The optimized editing-pulse FA MEGA scheme was tested in brain tumor patients. RESULTS: Simulation and phantom data indicated that the optimum FA of MEGA editing pulses is progressively larger than 180° as the editing-pulse bandwidth decreases. For 46 ms long 17.6 Hz bandwidth Gaussian pulses and other given sequence parameters, the lactate edited signal was maximum at the first and second editing-pulse FAs of 241° and 249°, respectively. The edit-on and difference-edited lactate peak areas of the optimized FA MEGA were greater by 43% and 25% compared to the 180°-FA MEGA, respectively. In-vivo data confirmed the simulation and phantom results. The lesions of the brain tumor patients showed elevated lactate and physiological levels of threonine. CONCLUSION: The lactate MEGA editing yield is significantly increased with editing-pulse FA much larger than 180° when the editing-pulse bandwidth is comparable to the lactate quartet frequency width.


Assuntos
Neoplasias Encefálicas , Ácido Láctico , Humanos , Espectroscopia de Ressonância Magnética/métodos , Imagens de Fantasmas , Neoplasias Encefálicas/diagnóstico por imagem , Treonina
5.
Magn Reson Med ; 91(6): 2638-2651, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38263948

RESUMO

PURPOSE: Our aim was to design and build a 3T 31P/1H calf coil that is capable of providing both good 31P and 1H transmit and receive performance, as well as being capable of accommodating a near-infrared spectroscopy (NIRS) device for simultaneous NIRS data and MRI/MRS acquisition. METHOD: In this work, we propose a new 3T 31P/1H birdcage combination design consisting of two co-centrically positioned birdcages on the same surface to maximize transmit efficiency and sensitivity for both nuclei. The 31P birdcage is a high-pass birdcage, whereas the 1H birdcage is a low-pass one to minimize coupling. The diameter of the 31P/1H birdcage combination was designed to be large enough to accommodate a NIRS device for simultaneous NIRS data and MRI/MRS acquisition. RESULTS: The one-layer coil structure of the birdcage combination significantly streamlines the mechanical design and coil assembly process. Full-wave simulation results show that the 31P and 1H are very well decoupled with each other, and the 1H and 31P SNR surpasses that of their standalone counterparts in the central area. Experiment results show that the inclusion of a NIRS device does not significantly affect the performance of the coil, thus enabling simultaneous NIRS and MRI readouts during exercise. CONCLUSION: Our findings demonstrate the feasibility and effectiveness of this dual-tuned coil design for combined NIRS and MRS measurements, offering potential benefits for studying metabolic and functional changes in the skeletal muscle in vivo.


Assuntos
Imageamento por Ressonância Magnética , Espectroscopia de Luz Próxima ao Infravermelho , Imageamento por Ressonância Magnética/métodos , Músculo Esquelético/diagnóstico por imagem , Simulação por Computador , Exercício Físico , Desenho de Equipamento , Imagens de Fantasmas
6.
Magn Reson Med ; 91(4): 1284-1300, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38029371

RESUMO

PURPOSE: Absolute spectral quantification is the standard method for deriving estimates of the concentration from metabolite signals measured using in vivo proton MRS (1 H-MRS). This method is often reported with minimum variance estimators, specifically the Cramér-Rao lower bound (CRLB) of the metabolite signal amplitude's scaling factor from linear combination modeling. This value serves as a proxy for SD and is commonly reported in MRS experiments. Characterizing the uncertainty of absolute quantification, however, depends on more than simply the CRLB. The uncertainties of metabolite-specific (T1m , T2m ), reference-specific (T1ref , T2ref ), and sequence-specific (TR , TE ) parameters are generally ignored, potentially leading to an overestimation of precision. In this study, the propagation of uncertainty is used to derive a comprehensive estimate of the overall precision of concentrations from an internal reference. METHODS: The propagated uncertainty is calculated using analytical derivations and Monte Carlo simulations and subsequently analyzed across a set of commonly measured metabolites and macromolecules. The effect of measurement error from experimentally obtained quantification parameters is estimated using published uncertainties and CRLBs from in vivo 1 H-MRS literature. RESULTS: The additive effect of propagated measurement uncertainty from applied quantification correction factors can result in up to a fourfold increase in the concentration estimate's coefficient of variation compared to the CRLB alone. A case study analysis reveals similar multifold increases across both metabolites and macromolecules. CONCLUSION: The precision of absolute metabolite concentrations derived from 1 H-MRS experiments is systematically overestimated if the uncertainties of commonly applied corrections are neglected as sources of error.


Assuntos
Encéfalo , Prótons , Humanos , Espectroscopia de Ressonância Magnética/métodos , Incerteza , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Método de Monte Carlo , Substâncias Macromoleculares/metabolismo
7.
J Magn Reson Imaging ; 59(3): 954-963, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37312270

RESUMO

BACKGROUND: Gamma-aminobutyric acid (GABA) is an inhibitory neurotransmitter in human brains, playing a role in the pathogenesis of various psychiatric disorders. Current methods have some non-neglectable shortcomings and noninvasive and accurate detection of GABA in human brains is long-term challenge. PURPOSE: To develop a pulse sequence capable of selectively detecting and quantifying the 1 H signal of GABA in human brains based on optimal controlled spin singlet order. STUDY TYPE: Prospective. SUBJECTS/PHANTOM: A phantom of GABA (pH = 7.3 ± 0.1) and 11 healthy subjects (5 females and 6 males, body mass index: 21 ± 3 kg/m2 , age: 25 ± 4 years). FIELD STRENGTH/SEQUENCE: 7 Tesla, 3 Tesla, GABA-targeted magnetic resonance spectroscopy (GABA-MRS-7 T, GABA-MRS-3 T), magnetization prepared two rapid acquisition gradient echoes sequence. ASSESSMENT: By using the developed pulse sequences applied on the phantom and healthy subjects, the signals of GABA were successfully selectively probed. Quantification of the signals yields the concentration of GABA in the dorsal anterior cingulate cortex (dACC) in human brains. STATISTICAL TESTS: Frequency. RESULTS: The 1 H signals of GABA in the phantom and in the human brains of healthy subjects were successfully detected. The concentration of GABA in the dACC of human brains was 3.3 ± 1.5 mM. DATA CONCLUSION: The developed pulse sequences can be used to selectively probe the 1 H MR signals of GABA in human brains in vivo. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY STAGE: 1.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Masculino , Feminino , Humanos , Adulto Jovem , Adulto , Estudos Prospectivos , Espectroscopia de Ressonância Magnética/métodos , Ácido gama-Aminobutírico
8.
J Magn Reson Imaging ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38284542

RESUMO

BACKGROUND: The changes that occur in the gamma-aminobutyric acid (GABA) levels within specific brain regions throughout the day are less clear. PURPOSE: To evaluate the daily fluctuations of GABA levels within the parietal lobe (PL) and anterior cingulate gyrus (ACC) regions and explore their association with melatonin (MT) levels, heart rate (HR), and blood pressure. STUDY TYPE: Prospective. SUBJECTS: 26 healthy young adults (15 males and 11 females aged 22-27 years). FIELD STRENGTH/SEQUENCE: 3.0T, T1-weighted imaging, Mescher-Garwood point resolved spectroscopy (MEGA-PRESS) sequence. ASSESSMENT: The acquired GABA signal contained the overlapping signals of macromolecules and homocarnosine, hence expressed as GABA+. The creatine (Cr) signal was applied as an endogenous reference. The GABA+, GABA+/Cr were measured at six different time points (1:00, 5:00, 9:00, 13:00, 17:00, and 21:00 hours) using MEGA-PRESS. The blood pressure, HR and sputum MT levels, were also acquired. STATISTICAL TESTS: The one-way repeated-measures analysis of variance (ANOVA) was used to evaluate the GABA, blood pressure, HR, and MT levels throughout the day. A general linear model was used to find the correlation between GABA and blood pressure, HR, and MT. P < 0.05 was statistically significant. RESULTS: Significant variations in GABA+/Cr and GABA+ levels were observed throughout the day within the PL region. The lowest levels were recorded at 9:00 hour (GABA+/Cr: 0.100 ± 0.003,GABA+:1.877 ± 0.051 i.u) and the highest levels were recorded at 21:00 hour (GABA+/Cr: 0.115 ± 0.003, GABA+:2.122 ± 0.052 i.u). The MT levels were positively correlated with GABA+/Cr (r = 0.301) and GABA+ (r = 0.312) within the ACC region. DATA CONCLUSION: GABA+/Cr and GABA+ in ACC are positively correlated with MT. GABA levels in the PL have diurnal differences. These findings may indicate that the body's GABA level change in response to the light-dark cycle. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 2.

9.
Acta Radiol ; 65(8): 967-974, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38767036

RESUMO

BACKGROUND: Football (soccer) is the world's most popular team sport. PURPOSE: To comprehensively examine the brain in football (soccer) players, with the use of magnetic resonance imaging (MRI) techniques. MATERIAL AND METHODS: The study involved 65 football players and 62 controls. The MR examinations were performed using MR 1.5-T system (Optima MR 360; GE Medical Systems). The examinations were carried out in the 3D Bravo, CUBE, FSEpropeller, and diffusion-weighted imaging (DWI) sequences. The 1HMRS signal was obtained from the volume of interest in the frontal and occipital lobes on both sides. RESULTS: The present study, based on structural MRI, shows some changes in the brains of the group of football players. The findings show asymmetry of the ventricular system in four football players, arachnoid cysts in the parieto-occipital region, and pineal cysts. NAA/Cr concentration in the right frontal lobe was lower in the football players than in the controls, and the Glx/Cr concentration in the right occipital lobe was higher. The apparent diffusion coefficient value is lower in football players in the occipital lobes. CONCLUSION: Playing football can cause measurable changes in the brain, known to occur in patients diagnosed with traumatic brain injury. The present findings fill the gap in the literature by contributing evidence showing that playing football may lead to changes in the brain, without clinical symptoms of concussion.


Assuntos
Imageamento por Ressonância Magnética , Futebol , Humanos , Masculino , Imageamento por Ressonância Magnética/métodos , Adulto , Adulto Jovem , Estudos de Casos e Controles , Encéfalo/diagnóstico por imagem , Adolescente
10.
Alzheimers Dement ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39262197

RESUMO

INTRODUCTION: Regional glucose hypometabolism resulting in glutamate loss has been shown as one of the characteristics of Alzheimer's disease (AD). Because the impact of AD varies between the sexes, we utilized glutamate-weighted chemical exchange saturation transfer (GluCEST) magnetic resonance imaging (MRI) for high-resolution spatial mapping of cerebral glutamate and investigated subregional changes in a sex-specific manner. METHODS: Eight-month-old male and female AD mice harboring mutant amyloid precursor protein (APPNL-F/NL-F: n = 36) and wild-type (WT: n = 39) mice underwent GluCEST MRI, followed by proton magnetic resonance spectroscopy (1H-MRS) in hippocampus and thalamus/hypothalamus using 9.4T preclinical MR scanner. RESULTS: GluCEST measurements revealed significant (p ≤ 0.02) glutamate loss in the entorhinal cortex (% change ± standard error: 8.73 ± 2.12%), hippocampus (11.29 ± 2.41%), and hippocampal fimbriae (19.15 ± 2.95%) of male AD mice. A similar loss of hippocampal glutamate in male AD mice (11.22 ± 2.33%; p = 0.01) was also observed in 1H-MRS. DISCUSSIONS: GluCEST MRI detected glutamate reductions in the fimbria and entorhinal cortex of male AD mice, which was not reported previously. Resilience in female AD mice against these changes indicates an intact status of cerebral energy metabolism. HIGHLIGHTS: Glutamate levels were monitored in different brain regions of early-stage Alzheimer's disease (AD) and wild-type male and female mice using glutamate-weighted chemical exchange saturation transfer (GluCEST) magnetic resonance imaging (MRI). Male AD mice exhibited significant glutamate loss in the hippocampus, entorhinal cortex, and the fimbriae of the hippocampus. Interestingly, female AD mice did not have any glutamate loss in any brain region and should be investigated further to find the probable cause. These findings demonstrate previously unreported sex-specific glutamate changes in hippocampal sub-regions using high-resolution GluCEST MRI.

11.
J Neurochem ; 164(2): 226-241, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36272099

RESUMO

Striatal medium spiny neurons are highly susceptible in Huntington's disease (HD), resulting in progressive synaptic perturbations that lead to neuronal dysfunction and death. Non-invasive imaging techniques, such as proton magnetic resonance spectroscopy (1 H-MRS), are used in HD mouse models and patients with HD to monitor neurochemical changes associated with neuronal health. However, the association between brain neurochemical alterations and synaptic dysregulation remains unknown, limiting our ability to monitor potential treatments that may affect synapse function. We conducted in vivo longitudinal 1 H-MRS in the striatum followed by ex vivo analyses of excitatory synapse density of two synaptic circuits disrupted in HD, thalamo-striatal (T-S), and cortico-striatal (C-S) pathways, to assess the relationship between neurochemical alterations and changes in synapse density. We used the zQ175(Tg/0) HD mouse model as well as zQ175 mice lacking one allele of CK2α'(zQ175(Tg/0) :CK2α'(+/-) ), a kinase previously shown to regulate synapse function in HD. Longitudinal analyses of excitatory synapse density showed early and sustained reduction in T-S synapses in zQ175 mice, preceding C-S synapse depletion, which was rescued in zQ175:CK2α'(+/-) . Changes in T-S and C-S synapses were accompanied by progressive alterations in numerous neurochemicals between WT and HD mice. Linear regression analyses showed C-S synapse number positively correlated with 1 H-MRS-measured levels of GABA, while T-S synapse number positively correlated with levels of phosphoethanolamine and negatively correlated with total creatine levels. These associations suggest that these neurochemical concentrations measured by 1 H-MRS may facilitate monitoring circuit-specific synaptic dysfunction in the zQ175 mouse model and in other HD pre-clinical studies.


Assuntos
Doença de Huntington , Camundongos , Animais , Doença de Huntington/metabolismo , Sinapses/metabolismo , Corpo Estriado/metabolismo , Neostriado/metabolismo , Neurônios/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos
12.
Magn Reson Med ; 90(3): 852-862, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37154389

RESUMO

PURPOSE: The need to detect and quantify brain lactate accurately by MRS has stimulated the development of editing sequences based on J coupling effects. In J-difference editing of lactate, threonine can be co-edited and it contaminates lactate estimates due to the spectral proximity of the coupling partners of their methyl protons. We therefore implemented narrow-band editing 180° pulses (E180) in MEGA-PRESS acquisitions to resolve separately the 1.3-ppm resonances of lactate and threonine. METHODS: Two 45.3-ms rectangular E180 pulses, which had negligible effects 0.15-ppm away from the carrier frequency, were implemented in a MEGA-PRESS sequence with TE 139 ms. Three acquisitions were designed to selectively edit lactate and threonine, in which the E180 pulses were tuned to 4.1 ppm, 4.25 ppm, and a frequency far off resonance. Editing performance was validated with numerical analyses and acquisitions from phantoms. The narrow-band E180 MEGA and another MEGA-PRESS sequence with broad-band E180 pulses were evaluated in six healthy subjects. RESULTS: The 45.3-ms E180 MEGA offered a difference-edited lactate signal with lower intensity and reduced contamination from threonine compared to the broad-band E180 MEGA. The 45.3 ms E180 pulse had MEGA editing effects over a frequency range larger than seen in the singlet-resonance inversion profile. Lactate and threonine in healthy brain were both estimated to be 0.4 ± 0.1 mM, with reference to N-acetylaspartate at 12 mM. CONCLUSION: Narrow-band E180 MEGA editing minimizes threonine contamination of lactate spectra and may improve the ability to detect modest changes in lactate levels.


Assuntos
Encéfalo , Ácido Láctico , Humanos , Ácido Láctico/análise , Espectroscopia de Ressonância Magnética , Encéfalo/diagnóstico por imagem , Imagens de Fantasmas , Treonina
13.
Magn Reson Med ; 89(4): 1314-1322, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36573435

RESUMO

PURPOSE: Acetylcarnitine can be assessed in vivo using proton MRS (1 H-MRS) with long TEs and this has been previously applied successfully in muscle. The aim of this study was to evaluate a 1 H-MRS technique for liver acetylcarnitine quantification in healthy humans before and after l-carnitine supplementation. METHOD: Baseline acetylcarnitine levels were quantified using a STEAM sequence with prolonged TE in 15 healthy adults. Using STEAM with four different TEs was evaluated in phantoms. To assess reproducibility of the measurements, five of the participants had repeated 1 H-MRS without receiving l-carnitine supplementation. To determine if liver acetylcarnitine could be changed after l-carnitine supplementation, acetylcarnitine was quantified 2 h after intravenous l-carnitine supplementation (50 mg/kg body weight) in the other 10 participants. Hepatic lipids were also quantified from the 1 H-MRS spectra. RESULTS: There was good separation between the acetylcarnitine and fat in the phantoms using TE = 100 ms. Hepatic acetylcarnitine levels were reproducible (coefficient of reproducibility = 0.049%) and there was a significant (p < 0.001) increase in the relative abundance after a single supplementation of l-carnitine. Hepatic allylic, methyl, and methylene peaks were not altered by l-carnitine supplementation in healthy volunteers. CONCLUSION: Our results demonstrate that our 1 H-MRS technique could be used to measure acetylcarnitine in the liver and detect changes following intravenous supplementation in healthy adults despite the presence of lipids. Our techniques should be explored further in the study of fatty liver disease, where acetylcarnitine is suggested to be altered due to hepatic inflexibilities.


Assuntos
Acetilcarnitina , Carnitina , Adulto , Humanos , Reprodutibilidade dos Testes , Músculo Esquelético , Fígado/diagnóstico por imagem , Suplementos Nutricionais , Lipídeos
14.
Magn Reson Med ; 90(3): 1166-1171, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37125620

RESUMO

PURPOSE: The purpose of this study was to identify and characterize newly discovered resonances appearing in the downfield proton MR spectrum (DF 1 H MRS) of the human calf muscle in vivo at 7T. METHODS: Downfield 1 H MRS was performed on the calf muscle of five healthy volunteers at 7T. A spectrally selective 90° E-BURP RF pulse with an excitation center frequency at 10.3 ppm and an excitation bandwidth of 2 ppm was used for DF 1 H MRS acquisition. RESULTS: In all participants, we observed new resonances at 9.7, 10.1, 10.3, and 10.9 ppm in the DF 1 H MRS. Phantom experiments at 37°C strongly suggest the new resonance at 9.7 ppm could be from H2-proton of the nicotinamide rings in nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN) while the resonance at 10.1 ppm could be attributed to the indole -NH proton of L-tryptophan. We observed that the resonances at 10.1 and 10.9 ppm are significantly suppressed when the water resonance is saturated, indicating that these peaks have either 1 H chemical exchange or cross-relaxation with water. Conversely, the resonances at 9.7 and 10.3 ppm exhibit moderate signal reduction in the presence of water saturation. CONCLUSION: We have identified new proton resonances in vivo in human calf muscle occurring at chemical shifts of 9.7, 10.1, 10.3, and 10.9 ppm. These preliminary results are promising for investigating the role of NR/NMN and L-tryptophan metabolism in understanding the de novo and salvage pathways of NAD+ synthesis in skeletal muscle.


Assuntos
NAD , Prótons , Humanos , Triptofano , Músculo Esquelético/diagnóstico por imagem , Água
15.
NMR Biomed ; : e4957, 2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37088548

RESUMO

The olfactory bulb (OB) plays a fundamental role in the sense of smell and has been implicated in several pathologies, including Alzheimer's disease. Despite its importance, high metabolic activity and unique laminar architecture, the OB is not frequently studied using MRS methods, likely due to the small size and challenging location. Here we present a detailed metabolic characterization of OB metabolism, in terms of both static metabolite concentrations using 1 H MRS and metabolic fluxes associated with neuro-energetics and neurotransmission by tracing the dynamic 13 C flow from intravenously administered [1,6-13 C2 ]-glucose, [2-13 C]-glucose and [2-13 C]-acetate to downstream metabolites, including [4-13 C]-glutamate, [4-13 C]-glutamine and [2-13 C]-GABA. The unique laminar architecture and associated metabolism of the OB, distinctly different from that of the cerebral cortex, is characterized by elevated GABA and glutamine levels, as well as increased GABAergic and astroglial energy metabolism and neurotransmission. The results show that, despite the technical challenges, high-quality 1 H and 1 H-[13 C] MR spectra can be obtained from the rat OB in vivo. The derived metabolite concentrations and metabolic rates demonstrate a unique metabolic profile for the OB. The metabolic model provides a solid basis for future OB studies on functional activation or pathological conditions.

16.
NMR Biomed ; 36(3): e4855, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36269130

RESUMO

Changes in glioblastoma (GBM) metabolism was investigated in response to JAS239, a choline kinase inhibitor, using MRS. In addition to the inhibition of phosphocholine synthesis, we investigated changes in other key metabolic pathways associated with GBM progression and treatment response. Three syngeneic rodent models of GBM were used: F98 (N = 12) and 9L (N = 8) models in rats and GL261 (N = 10) in mice. Rodents were intracranially injected with GBM cells in the right cortex and tumor growth was monitored using T2 -weighted images. Animals were treated once daily with intraperitoneal injections of 4 mg/kg JAS239 (F98 rats, n = 6; 9L rats, n = 6; GL261 mice, n = 5) or saline (control group, F98 rats, n = 6; 9L rats, n = 2; GL261 mice, n = 5) for five consecutive days. Single voxel spectra were acquired on Days 0 (T0, baseline) and 6 (T6, end of treatment) from the tumor as well as the contralateral normal brain using a PRESS sequence. Changes in metabolite ratios (tCho/tCr, tCho/NAA, mI/tCr, Glx/tCr and (Lip + Lac)/Cr) were used to assess metabolic pathway alterations in response to JAS239. Tumor growth arrest was noted in all models in response to JAS239 treatment compared with saline-treated animals, with a significant reduction (p < 0.05) in the F98 model. A reduction in tCho/tCr was observed with JAS239 treatment in all GBM models, indicating reduced phospholipid metabolism, with the highest reduction in 9L followed by GL261 and F98 tumors. A significant reduction (p < 0.05) in the tCho/NAA ratio was observed in the 9L model. A significant reduction in mI/tCr (p < 0.05) was found in JAS239-treated F98 tumors compared with the saline-treated animals. A non-significant trend of reduction in Glx/tCr was observed only in F98 and 9L tumors. JAS239-treated F98 tumors also showed a significant increase in Lip + Lac (p < 0.05), indicating increased cell death. This study demonstrated the utility of MRS in assessing metabolic changes in GBM in response to choline kinase inhibition.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Ratos , Camundongos , Animais , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Roedores/metabolismo , Colina Quinase , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Receptores de Antígenos de Linfócitos T , Colina/metabolismo
17.
NMR Biomed ; 36(4): e4879, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36424353

RESUMO

This paper provides a brief description of the early use of ex vivo nuclear magnetic resonance (NMR) studies of tissue and tissue extracts performed in the laboratory of Dr. Robert G. Shulman from 1975 through 1995 at Bell Laboratories, then later at Yale University. During that period, ex vivo NMR provided critical information in support of resonance assignments and the quantitation of concentrations for magnetic resonance spectroscopy studies. The period covered saw rapid advances in magnet technology, starting with studies of microorganisms in vertical bore high-resolution NMR studies, then by 1981 studies of small mammals in a horizontal bore magnet, and then studies of humans in 1984. Ex vivo NMR played a critical role in all these studies. A general strategy developed in the lab for using ex vivo NMR to support in vivo studies is presented, as well as illustrative examples.


Assuntos
Laboratórios , Imageamento por Ressonância Magnética , Animais , Humanos , Espectroscopia de Ressonância Magnética/métodos , Mamíferos
18.
NMR Biomed ; 36(7): e4907, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36651918

RESUMO

The present study characterized associations among brain metabolite levels, applying bivariate and multivariate (i.e., factor analysis) statistical methods to total creatine (tCr)-referenced estimates of the major Point RESolved Spectroscopy (PRESS) proton MR spectroscopy (1 H-MRS) metabolites (i.e., total NAA/tCr, total choline/tCr, myo-inositol/tCr, glutamate + glutamine/tCr) acquired at 3 T from medial parietal lobe in a large (n = 299), well-characterized international cohort of healthy volunteers. Results supported the hypothesis that 1 H-MRS-measured metabolite estimates are moderately intercorrelated (Mr = 0.42, SDr = 0.11, ps < 0.001), with more than one-half (i.e., 57%) of the total variability in metabolite estimates explained by a single common factor. Older age was significantly associated with lower levels of the identified common metabolite variance (CMV) factor (ß = -0.09, p = 0.048), despite not being associated with levels of any individual metabolite. Holding CMV factor levels constant, females had significantly lower levels of total choline (i.e., unique metabolite variance; ß = -0.19, p < 0.001), mirroring significant bivariate correlations between sex and total choline reported previously. Supplementary analysis of water-referenced metabolite estimates (i.e., including tCr/water) demonstrated lower, although still substantial, intercorrelations among metabolites, with 37% of total metabolite variance explained by a single common factor. If replicated, these results would suggest that applied 1 H-MRS researchers shift their analytical framework from examining bivariate associations between individual metabolites and specialty-dependent (e.g., clinical, research) variables of interest (e.g., using t-tests) to examining multivariable (i.e., covariate) associations between multiple metabolites and specialty-dependent variables of interest (e.g., using multiple regression).


Assuntos
Infecções por Citomegalovirus , Prótons , Feminino , Humanos , Espectroscopia de Ressonância Magnética/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Creatina/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Colina/metabolismo , Inositol/metabolismo , Ácido Aspártico , Água/metabolismo , Infecções por Citomegalovirus/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo
19.
Anal Biochem ; 669: 115113, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36958511

RESUMO

The aim of this guideline is to provide a series of evidence-based recommendations that allow those new to using MEGA-PRESS to produce high-quality data for the measurement of GABA levels using edited magnetic resonance spectroscopy with the MEGA-PRESS sequence at 3T. GABA is the main inhibitory neurotransmitter of the central nervous system and has been increasingly studied due to its relevance in many clinical disorders of the central nervous system. MEGA-PRESS is the most widely used method for quantification of GABA at 3T, but is technically challenging and operates at a low signal-to-noise ratio. Therefore, the acquisition of high-quality MRS data relies on avoiding numerous pitfalls and observing important caveats. The guideline was developed by a working party that consisted of experts in MRS and experts in guideline development and implementation, together with key stakeholders. Strictly following a translational framework, we first identified evidence using a systematically conducted scoping literature review, then synthesized and graded the quality of evidence that formed recommendations. These recommendations were then sent to a panel of 21 world leaders in MRS for feedback and approval using a modified-Delphi process across two rounds. The final guideline consists of 23 recommendations across six domains essential for GABA MRS acquisition (Parameters, Practicalities, Data acquisition, Confounders, Quality/reporting, Post-processing). Overall, 78% of recommendations were formed from high-quality evidence, and 91% received agreement from over 80% of the expert panel. These 23 expert-reviewed recommendations and accompanying extended documentation form a readily useable guideline to allow those new to using MEGA-PRESS to design appropriate MEGA-PRESS study protocols and generate high-quality data.


Assuntos
Encéfalo , Ácido gama-Aminobutírico , Espectroscopia de Ressonância Magnética/métodos , Razão Sinal-Ruído , Sistema Nervoso Central
20.
J Magn Reson Imaging ; 58(5): 1557-1568, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36877200

RESUMO

BACKGROUND: The reference standard for assessing water T2 (T2,H2O ) at high fat fraction (FF) is 1 H MRS. T2,H2O (T2,H2O,MRS ) dependence on FF (FFMRS ) has recently been demonstrated in muscle at high FF (i.e. ≥60%). PURPOSE: To investigate the relationship between T2,H2O,MRS and FFMRS in the thigh/leg muscles of patients with neuromuscular diseases and to compare with quantitative MRI. STUDY TYPE: Retrospective case-control study. POPULATION: A total of 151 patients with neuromuscular disorders (mean age ± standard deviation = 52.5 ± 22.6 years, 54% male), 44 healthy volunteers (26.5 ± 13.0 years, 57% male). FIELD STRENGTH/SEQUENCE: A 3-T; single-voxel stimulated echo acquisition mode (STEAM) MRS, multispin echo (MSE) imaging (for T2 mapping, T2,H2O,MRI ), three-point Dixon imaging (for FFMRI and R 2 * mapping). ASSESSMENT: Mono-exponential and bi-exponential models were fitted to water T2 decay curves to extract T2,H2O,MRS and FFMRS . Water resonance full-width-at-half-maximum (FWHM) and B0 spread (∆B0 ) values were calculated. T2,H2O,MRI (mean), FFMRI (mean, kurtosis, and skewness), and R 2 * (mean) values were estimated in the MRS voxel. STATISTICAL TESTS: Mann-Whitney U tests, Kruskal-Wallis tests. A P-value <0.05 was considered statistically significant. RESULTS: Normal T2,H2O,MRS threshold was defined as the 90th percentile in healthy controls: 30.3 msec. T2,H2O,MRS was significantly higher in all patients with FFMRS < 60% compared to healthy controls. We discovered two subgroups in patients with FFMRS ≥ 60%: one with T2,H2O,MRS ≥ 30.3 msec and one with T2,H2O,MRS < 30.3 msec including abnormally low T2,H2O,MRS . The latter subgroup had significantly higher water resonance FWHM, ∆B0 , FFMRI kurtosis, and skewness values but nonsignificantly different R 2 * (P = 1.00) and long T2,H2O,MRS component and its fraction (P > 0.11) based on the bi-exponential analysis. DATA CONCLUSION: The findings suggest that the cause for (abnormally) T2,H2O,MRS at high FFMRS is biophysical, due to differences in susceptibility between muscle and fat (increased FWHM and ∆B0 ), rather than pathophysiological such as compartmentation changes, which would be reflected by the bi-exponential analysis. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 3.


Assuntos
Doenças Neuromusculares , Água , Humanos , Masculino , Feminino , Estudos Retrospectivos , Estudos de Casos e Controles , Músculo Esquelético/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA