Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(17): e2307728, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38263806

RESUMO

Herein, the structure of integrated M3D inverters are successfully demonstrated where a chemical vapor deposition (CVD) synthesized monolayer WSe2 p-type nanosheet FET is vertically integrated on top of CVD synthesized monolayer MoS2 n-type film FET arrays (2.5 × 2.5 cm) by semiconductor industry techniques, such as transfer, e-beam evaporation (EBV), and plasma etching processes. A low temperature (below 250 °C) is employed to protect the WSe2 and MoS2 channel materials from thermal decomposition during the whole fabrication process. The MoS2 NMOS and WSe2 PMOS device fabricated show an on/off current ratio exceeding 106 and the integrated M3D inverters indicate an average voltage gain of ≈9 at VDD = 2 V. In addition, the integrated M3D inverter demonstrates an ultra-low power consumption of 0.112 nW at a VDD of 1 V. Statistical analysis of the fabricated inverters devices shows their high reliability, rendering them suitable for large-area applications. The successful demonstration of M3D inverters based on large-scale 2D monolayer TMDs indicate their high potential for advancing the application of 2D TMDs in future integrated circuits.

2.
Nanotechnology ; 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38055987

RESUMO

This work presents a high-performance surface plasmon resonance (SPR)-based biosensor for glucose detection. While adding a metal-organic framework (MOF) layer, UiO-66, to the biosensor improves selectivity and enables direct detection without additional receptors, it does not significantly enhance sensitivity. A SPR-based biosensor is proposed to overcome this limitation by introducing a layer of 2D-transition metal dichalcogenides (2D-TMD) and decorating the UiO-66 structure with gold nanoparticles (UiO-66AuNP). The optical properties of the biosensor for glucose detection in urine are investigated by employing the finite difference time domain (FDTD) method with Kretschmann configuration at a wavelength of 633 nm, and its performance is effectively improved by incorporating 2D-TMD and AuNP layers into the biosensor structure. Notably, the SPR-based biosensor with the decorated UiO-66 layer exhibits a further change in the SPR angle in the presence of glucose-containing urine. Using computational studies, various performance parameters, such as the biosensors' signal-to-noise ratio (SNR) and quality factor (QF), are evaluated in addition to sensitivity. The maximum sensitivity achieved is 309.3°/RIU for the BK7/Ag/PtSe2/WSe2/MoS2/UiO-66AuNP/sensing medium structure. The exceptional performance of the proposed biosensor structure demonstrates its suitability for precise glucose detection in urine while also opening new avenues for developing bioreceptor-free SPR-based sensors.

3.
Angew Chem Int Ed Engl ; 62(13): e202218016, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36593736

RESUMO

Two-dimensional (2D) transition metal dichalcogenides (TMDs), a rising star in the post-graphene era, are fundamentally and technologically intriguing for photocatalysis. Their extraordinary electronic, optical, and chemical properties endow them as promising materials for effectively harvesting light and catalyzing the redox reaction in photocatalysis. Here, we present a tutorial-style review of the field of 2D TMDs for photocatalysis to educate researchers (especially the new-comers), which begins with a brief introduction of the fundamentals of 2D TMDs and photocatalysis along with the synthesis of this type of material, then look deeply into the merits of 2D TMDs as co-catalysts and active photocatalysts, followed by an overview of the challenges and corresponding strategies of 2D TMDs for photocatalysis, and finally look ahead this topic.

4.
Nano Lett ; 19(11): 7598-7607, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31244238

RESUMO

Two-dimensional transition-metal dichalcogenide (2D TMD) layers are highly attractive for emerging stretchable and foldable electronics owing to their extremely small thickness coupled with extraordinary electrical and optical properties. Although intrinsically large strain limits are projected in them (i.e., several times greater than silicon), integrating 2D TMDs in their pristine forms does not realize superior mechanical tolerance greatly demanded in high-end stretchable and foldable devices of unconventional form factors. In this article, we report a versatile and rational strategy to convert 2D TMDs of limited mechanical tolerance to tailored 3D structures with extremely large mechanical stretchability accompanying well-preserved electrical integrity and modulated transport properties. We employed a concept of strain engineering inspired by an ancient paper-cutting art, known as kirigami patterning, and developed 2D TMD-based kirigami electrical conductors. Specifically, we directly integrated 2D platinum diselenide (2D PtSe2) layers of controlled carrier transport characteristics on mechanically flexible polyimide (PI) substrates by taking advantage of their low synthesis temperature. The metallic 2D PtSe2/PI kirigami patterns of optimized dimensions exhibit an extremely large stretchability of ∼2000% without compromising their intrinsic electrical conductance. They also present strain-tunable and reversible photoresponsiveness when interfaced with semiconducting carbon nanotubes (CNTs), benefiting from the formation of 2D PtSe2/CNT Schottky junctions. Moreover, kirigami field-effect transistors (FETs) employing semiconducting 2D PtSe2 layers exhibit tunable gate responses coupled with mechanical stretching upon electrolyte gating. The exclusive role of the kirigami pattern parameters in the resulting mechanoelectrical responses was also verified by a finite-element modeling (FEM) simulation. These multifunctional 2D materials in unconventional yet tailored 3D forms are believed to offer vast opportunities for emerging electronics and optoelectronics.

5.
Adv Mater ; 31(20): e1804939, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30706541

RESUMO

An overview of recent developments in controlled vapor-phase growth of 2D transition metal dichalcogenide (2D TMD) films is presented. Investigations of thin-film formation mechanisms and strategies for realizing 2D TMD films with less-defective large domains are of central importance because single-crystal-like 2D TMDs exhibit the most beneficial electronic and optoelectronic properties. The focus is on the role of the various growth parameters, including strategies for efficiently delivering the precursors, the selection and preparation of the substrate surface as a growth assistant, and the introduction of growth promoters (e.g., organic molecules and alkali metal halides) to facilitate the layered growth of (Mo, W)(S, Se, Te)2 atomic crystals on inert substrates. Critical factors governing the thermodynamic and kinetic factors related to chemical reaction pathways and the growth mechanism are reviewed. With modification of classical nucleation theory, strategies for designing and growing various vertical/lateral TMD-based heterostructures are discussed. Then, several pioneering techniques for facile observation of structural defects in TMDs, which substantially degrade the properties of macroscale TMDs, are introduced. Technical challenges to be overcome and future research directions in the vapor-phase growth of 2D TMDs for heterojunction devices are discussed in light of recent advances in the field.

6.
ACS Appl Mater Interfaces ; 10(25): 21534-21540, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29847086

RESUMO

A multilayer platinum diselenide (PtSe2) film was experimentally demonstrated as a new type of saturable absorber with the capability to deliver robust dissipative solitons in a passively mode-locked fiber laser. The PtSe2 film synthesized by chemical vapor deposition was placed onto the ferule of a single mode optical fiber through a typical dry transfer process. The nonlinear optical measurements reveal efficient saturable absorption characteristics in terms of a large modulation depth (26%) and low saturable intensity (0.346 GW cm-2) at the wavelength of 1064 nm. An all-fiber ring cavity was built, in which the PtSe2 film was sandwiched between two ferules as the saturable absorber and Ytterbium-doped fiber was used as the optical gain medium. Robust dissipative soliton pulses with a 3 dB spectral bandwidth of 2.0 nm and a pulse duration of 470 ps centered at 1064.47 nm were successfully observed in the normal dispersion regime. Moreover, our mode-locked lasers also exhibit good long-term stability. Our finding suggests that multilayer PtSe2 may find potential applications in nonlinear optics and ultrafast photonics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA