Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Signal Behav ; 9(12): e977200, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25482752

RESUMO

This review focuses on the energy metabolism during pollen maturation and tube growth and updates current knowledge. Pollen tube growth is essential for male reproductive success and extremely fast. Therefore, pollen development and tube growth are high energy-demanding processes. During the last years, various publications (including research papers and reviews) emphasize the importance of mitochondrial respiration and fermentation during male gametogenesis and pollen tube elongation. These pathways obviously contribute to satisfy the high energy demand, and there are many studies which suggest that respiration and fermentation are the only pathways to generate the needed energy. Here, we review data which show for the first time that in addition plastidial glycolysis and the balancing of the ATP/NAD(P)H ratio (by malate valves and NAD(+) biosynthesis) contribute to satisfy the energy demand during pollen development. Although the importance of energy generation by plastids was discounted during the last years (possibly due to the controversial opinion about their existence in pollen grains and pollen tubes), the available data underline their prime role during pollen maturation and tube growth.


Assuntos
Metabolismo Energético , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/metabolismo , Fermentação , Mitocôndrias/metabolismo , Oxirredução , Plastídeos/metabolismo
2.
FEBS Lett ; 587(17): 2860-7, 2013 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-23856461

RESUMO

Enzymology tends to focus on highly specific effects of substrates, allosteric modifiers, and products occurring at low concentrations, because these are most informative about the enzyme's catalytic mechanism. We hypothesized that at relatively high in vivo concentrations, important molecular monitors of the state of living cells, such as ATP, affect multiple enzymes of the former and that these interactions have gone unnoticed in enzymology. We test this hypothesis in terms of the effect that ATP, ADP, and AMP might have on the major free-energy delivering pathway of the yeast Saccharomyces cerevisiae. Assaying cell-free extracts, we collected a comprehensive set of quantitative kinetic data concerning the enzymes of the glycolytic and the ethanol fermentation pathways. We determined systematically the extent to which the enzyme activities depend on the concentrations of the adenine nucleotides. We found that the effects of the adenine nucleotides on enzymes catalysing reactions in which they are not directly involved as substrate or product, are substantial. This includes effects on the Michaelis-Menten constants, adding new perspective on these, 100 years after their introduction.


Assuntos
Nucleotídeos de Adenina/química , Glicólise , Modelos Biológicos , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Nucleotídeos de Adenina/fisiologia , Regulação Alostérica , Fermentação , Cinética , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Frações Subcelulares/enzimologia , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA