Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microb Cell Fact ; 23(1): 5, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172868

RESUMO

BACKGROUND AND AIM: Reprogramming microorganisms to enhance the production of metabolites is a part of contemporary synthetic biology, which relies on the availability of genetic tools to successfully manipulate the bacteria. Methylorubrum extorquens AM1 is a platform microorganism used to convert C1 compounds into various value-added products. However, the repertoire of available plasmids to conveniently and quickly fine-tune the expression of multiple genes in this strain is extremely limited compared with other model microorganisms such as Escherichia coli. Thus, this study aimed to integrate existing technologies, such as transposon-mediated chromosomal integration and cre-lox-mediated recombination, to achieve the diversified expression of target genes through multiple chromosomal insertions in M. extorquens AM1. RESULTS: A single plasmid toolkit, pSL-TP-cre-km, containing a miniHimar1 transposon and an inducible cre-lox71/lox66 system, was constructed and characterized for its multiple chromosomal integration capacity. A co-transcribed mcr-egfp cassette [for the production of 3-hydroxypropionic acid (3-HP) and a reporting green fluorescent protein] was added to construct pTP-cre-mcr-egfp for evaluating its utility in mediating the expression of heterologous genes, resulting in the production of 3-HP with a titer of 34.7-55.2 mg/L by two chromosomal integration copies. Furthermore, in association with the expression of plasmid-based mcr, 3-HP production increased to 65.5-92.4 mg/L. CONCLUSIONS: This study used a multi-round chromosomal integration system based on cre-lox71/lox66 and a transposon to construct a single constructed vector. A heterologous mcr gene was introduced through this vector, and high expression of 3-hydroxypropionic acid was achieved in M. extorquens. This study provided an efficient genetic tool for manipulating M. extorquens, which not only help increase the expression of heterologous genes in M. extorquens but also provide a reference for strains lacking genetic manipulation vectors.


Assuntos
Vetores Genéticos , Integrases , Integrases/genética , Plasmídeos/genética , Ácido Láctico
2.
Biochem Biophys Res Commun ; 680: 1-6, 2023 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-37703602

RESUMO

Microbial 3-hydroxypropionic acid (3-HP) production can potentially replace petroleum-based production methods for acrylic acid. Here, we constructed a yeast strain that expressed enzymes related to 3-HP biosynthesis within the mitochondria. This approach aimed to enhance the 3-HP production by utilizing the mitochondrial acetyl-CoA, an important intermediate for synthesizing 3-HP. The strain that expressed 3-HP-producing enzymes in the mitochondria (YPH-mtA3HP) showed improved production of 3-HP compared to that shown by the strain expressing 3-HP-producing enzymes in the cytosol (YPH-cyA3HP). Additionally, cMCR was overexpressed, which regulates a rate-limiting reaction in synthesizing 3-HP. In this study, we aimed to further enhance 3-HP production by expressing multiple copies of cMCR in the mitochondria using the δ-integration strategy to optimize the expression level of cMCR (YPH-mtA3HPx*). The results of flask-scale cultivation showed that 3-HP production by cMCR δ-integration was significantly higher, exhibiting a yield of 160 mg/L in YPH-mtA3HP6* strain and 257 mg/L in YPH-mtA3HP22* strain. Notably, YPH-mtA3HP22*, exhibited the highest 3-HP titer, which was 3.2-fold higher than that of YPH-cyA3HP. Our results demonstrated the potential of utilizing the mitochondrial compartment within S. cerevisiae for enhancing 3-HP production.


Assuntos
Oxirredutases , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Acetilcoenzima A/metabolismo , Oxirredutases/metabolismo , Ácido Láctico/metabolismo , Engenharia Metabólica/métodos
3.
Metab Eng ; 78: 72-83, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37201565

RESUMO

Microbial production of valuable bioproducts is a promising route towards green and sustainable manufacturing. The oleaginous yeast, Rhodosporidium toruloides, has emerged as an attractive host for the production of biofuels and bioproducts from lignocellulosic hydrolysates. 3-hydroxypropionic acid (3HP) is an attractive platform molecule that can be used to produce a wide range of commodity chemicals. This study focuses on establishing and optimizing the production of 3HP in R. toruloides. As R. toruloides naturally has a high metabolic flux towards malonyl-CoA, we exploited this pathway to produce 3HP. Upon finding the yeast capable of catabolizing 3HP, we then implemented functional genomics and metabolomic analysis to identify the catabolic pathways. Deletion of a putative malonate semialdehyde dehydrogenase gene encoding an oxidative 3HP pathway was found to significantly reduce 3HP degradation. We further explored monocarboxylate transporters to promote 3HP transport and identified a novel 3HP transporter in Aspergillus pseudoterreus by RNA-seq and proteomics. Combining these engineering efforts with media optimization in a fed-batch fermentation resulted in 45.4 g/L 3HP production. This represents one of the highest 3HP titers reported in yeast from lignocellulosic feedstocks. This work establishes R. toruloides as a host for 3HP production from lignocellulosic hydrolysate at high titers, and paves the way for further strain and process optimization towards enabling industrial production of 3HP in the future.


Assuntos
Lignina , Engenharia Metabólica , Engenharia Metabólica/métodos , Lignina/metabolismo
4.
Biotechnol Bioeng ; 120(3): 852-858, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36464776

RESUMO

Odd-chain fatty acids (OCFAs) and their derivatives have attracted increasing attention due to their wide applications in the chemical, fuel, and pharmaceutical industry. However, most natural fatty acids are even-chained, and OCFAs are rare. In this work, a novel pathway was designed and established for de novo synthesis of OCFAs via 3-hydroxypropionic acid (3-HP) as the intermediate in Saccharomyces cerevisiae. First, the OCFAs biosynthesis pathway from 3-HP was confirmed, followed by an optimization of the precursor 3-HP. After combining these strategies, a de novo production of OCFAs at 74.8 mg/L was achieved, and the percentage of OCFAs in total lipids reached 20.3%, reaching the highest ratio of de novo-produced OCFAs. Of the OCFAs produced by the engineered strain, heptadecenoic acid (C17:1) and heptadecanoic acid (C17:0) accounted for 12.1% and 7.6% in total lipid content, respectively. This work provides a new and promising pathway for the de novo bio-production of OCFAs.


Assuntos
Ácidos Graxos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Ácido Láctico/metabolismo , Engenharia Metabólica
5.
Microb Cell Fact ; 22(1): 237, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978380

RESUMO

BACKGROUND: Methanol is increasingly gaining attraction as renewable carbon source to produce specialty and commodity chemicals, as it can be generated from renewable sources such as carbon dioxide (CO2). In this context, native methylotrophs such as the yeast Komagataella phaffii (syn Pichia pastoris) are potentially attractive cell factories to produce a wide range of products from this highly reduced substrate. However, studies addressing the potential of this yeast to produce bulk chemicals from methanol are still scarce. 3-Hydroxypropionic acid (3-HP) is a platform chemical which can be converted into acrylic acid and other commodity chemicals and biopolymers. 3-HP can be naturally produced by several bacteria through different metabolic pathways. RESULTS: In this study, production of 3-HP via the synthetic ß-alanine pathway has been established in K. phaffii for the first time by expressing three heterologous genes, namely panD from Tribolium castaneum, yhxA from Bacillus cereus, and ydfG from Escherichia coli K-12. The expression of these key enzymes allowed a production of 1.0 g l-1 of 3-HP in small-scale cultivations using methanol as substrate. The addition of a second copy of the panD gene and selection of a weak promoter to drive expression of the ydfG gene in the PpCß21 strain resulted in an additional increase in the final 3-HP titer (1.2 g l-1). The 3-HP-producing strains were further tested in fed-batch cultures. The best strain (PpCß21) achieved a final 3-HP concentration of 21.4 g l-1 after 39 h of methanol feeding, a product yield of 0.15 g g-1, and a volumetric productivity of 0.48 g l-1 h-1. Further engineering of this strain aiming at increasing NADPH availability led to a 16% increase in the methanol consumption rate and 10% higher specific productivity compared to the reference strain PpCß21. CONCLUSIONS: Our results show the potential of K. phaffii as platform cell factory to produce organic acids such as 3-HP from renewable one-carbon feedstocks, achieving the highest volumetric productivities reported so far for a 3-HP production process through the ß-alanine pathway.


Assuntos
Escherichia coli K12 , Metanol , Metanol/metabolismo , Escherichia coli K12/genética , Escherichia coli/metabolismo , beta-Alanina/genética , Engenharia Metabólica/métodos
6.
Microb Cell Fact ; 22(1): 117, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37380999

RESUMO

BACKGROUND: Production of 3-hydroxypropionic acid (3-HP) through the malonyl-CoA pathway has yielded promising results in Pichia pastoris (Komagataella phaffii), demonstrating the potential of this cell factory to produce this platform chemical and other acetyl-CoA-derived products using glycerol as a carbon source. However, further metabolic engineering of the original P. pastoris 3-HP-producing strains resulted in unexpected outcomes, e.g., significantly lower product yield and/or growth rate. To gain an understanding on the metabolic constraints underlying these observations, the fluxome (metabolic flux phenotype) of ten 3-HP-producing P. pastoris strains has been characterized using a high throughput 13C-metabolic flux analysis platform. Such platform enabled the operation of an optimised workflow to obtain comprehensive maps of the carbon flux distribution in the central carbon metabolism in a parallel-automated manner, thereby accelerating the time-consuming strain characterization step in the design-build-test-learn cycle for metabolic engineering of P. pastoris. RESULTS: We generated detailed maps of the carbon fluxes in the central carbon metabolism of the 3-HP producing strain series, revealing the metabolic consequences of different metabolic engineering strategies aimed at improving NADPH regeneration, enhancing conversion of pyruvate into cytosolic acetyl-CoA, or eliminating by-product (arabitol) formation. Results indicate that the expression of the POS5 NADH kinase leads to a reduction in the fluxes of the pentose phosphate pathway reactions, whereas an increase in the pentose phosphate pathway fluxes was observed when the cytosolic acetyl-CoA synthesis pathway was overexpressed. Results also show that the tight control of the glycolytic flux hampers cell growth due to limited acetyl-CoA biosynthesis. When the cytosolic acetyl-CoA synthesis pathway was overexpressed, the cell growth increased, but the product yield decreased due to higher growth-associated ATP costs. Finally, the six most relevant strains were also cultured at pH 3.5 to assess the effect of a lower pH on their fluxome. Notably, similar metabolic fluxes were observed at pH 3.5 compared to the reference condition at pH 5. CONCLUSIONS: This study shows that existing fluoxomics workflows for high-throughput analyses of metabolic phenotypes can be adapted to investigate P. pastoris, providing valuable information on the impact of genetic manipulations on the metabolic phenotype of this yeast. Specifically, our results highlight the metabolic robustness of P. pastoris's central carbon metabolism when genetic modifications are made to increase the availability of NADPH and cytosolic acetyl-CoA. Such knowledge can guide further metabolic engineering of these strains. Moreover, insights into the metabolic adaptation of P. pastoris to an acidic pH have also been obtained, showing the capability of the fluoxomics workflow to assess the metabolic impact of environmental changes.


Assuntos
Carbono , Análise do Fluxo Metabólico , Acetilcoenzima A , Trifosfato de Adenosina
7.
BMC Pregnancy Childbirth ; 23(1): 828, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036952

RESUMO

BACKGROUND: Intrahepatic cholestasis of pregnancy (ICP) is a prevalent pregnancy-specific complication that presents with maternal itching and elevated serum bile acid levels. ICP is associated with unfavorable pregnancy outcomes, severely decreasing the pregnant woman's quality of life. Timely identification of ICP is crucial for effective management and improved outcomes. METHODS: We collected urine samples from 8 patients with ICP and 8 healthy individuals. We used Liquid Chromatography-Mass Spectrometry (LC-MS) to detect metabolite expression levels, then conducted a series of bioinformatic analyses to explore the potential biological meanings of differentially expressed metabolites, and preliminarily discovered several candidate biomarkers. To validate these candidate biomarkers, we performed Gas Chromatography-Mass Spectrometry (GC-MS) detection and analyzed their diagnostic values using receiver operating characteristic (ROC) curve. RESULTS: Untargeted metabolomics data showed that 6129 positive peaks and 6218 negative peaks were extracted from each specimen. OPLS-DA analysis and the heat map for cluster analysis showed satisfactory capability in discriminating ICP specimens from controls. Subsequent analysis extracted 64 significantly differentially expressed metabolites, which could be potential biomarkers for diagnosis of ICP. Based on the KEGG enrichment analyses, six candidate biomarkers were preliminarily identified. Two most promising biomarkers (3-hydroxypropionic acid and uracil) were validated by targeted metabolomics analyses with the area under the curve (AUC) of 0.920 and 0.850 respectively. CONCLUSION: Based on preliminary screening from untargeted metabolomics and subsequent validation through targeted metabolomics, 3-hydroxypropionic acid and uracil were identified as promising diagnostic biomarkers for ICP.


Assuntos
Colestase Intra-Hepática , Qualidade de Vida , Gravidez , Feminino , Humanos , Metabolômica , Colestase Intra-Hepática/diagnóstico , Biomarcadores , Uracila
8.
Molecules ; 28(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36838875

RESUMO

3-Hydroxypropionic acid (3-HP) is a platform chemical with a wide range of existing and potential applications, including the production of poly(3-hydroxypropionate) (P-3HP), a biodegradable plastic. The microbial synthesis of 3-HP has attracted significant attention in recent years due to its green and sustainable properties. In this paper, we provide an overview of the microbial synthesis of 3-HP from four major aspects, including the main 3-HP biosynthesis pathways and chassis strains used for the construction of microbial cell factories, the major carbon sources used for 3-HP production, and fermentation processes. Recent advances in the biosynthesis of 3-HP and related metabolic engineering strategies are also summarized. Finally, this article provides insights into the future direction of 3-HP biosynthesis.


Assuntos
Vias Biossintéticas , Redes e Vias Metabólicas , Ácido Láctico , Fermentação , Engenharia Metabólica
9.
Metab Eng ; 74: 178-190, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36336174

RESUMO

3-Hydroxypropionate (3-HP) is a versatile compound for chemical synthesis and a potential building block for biodegradable polymers. Cupriavidus necator H16, a facultative chemolithoautotroph, is an attractive production chassis and has been extensively studied as a model organism for biopolymer production. Here, we engineered C. necator H16 for 3-HP biosynthesis from its central metabolism. Wild type C. necator H16 can use 3-HP as a carbon source, a highly undesirable trait for a 3-HP production chassis. However, deletion of its three (methyl-)malonate semialdehyde dehydrogenases (mmsA1, mmsA2 and mmsA3) resulted in a strain that cannot grow on 3-HP as the sole carbon source, and this strain was selected as our production host. A stepwise approach was used to construct pathways for 3-HP production via ß-alanine. Two additional gene deletion targets were identified during the pathway construction process. Deletion of the 3-hydroxypropionate dehydrogenase, encoded by hpdH, prevented the re-consumption of the 3-HP produced by our engineered strains, while deletion of gdhA1, annotated as a glutamate dehydrogenase, prevented the utilization of aspartate as a carbon source, one of the key pathway intermediates. The final strain carrying these deletions was able to produce up to 8 mM 3-HP heterotrophically. Furthermore, an engineered strain was able to produce 0.5 mM 3-HP under autotrophic conditions, using CO2 as sole carbon source. These results form the basis for establishing C. necator H16 as an efficient platform for the production of 3-HP and 3-HP-containing polymers.


Assuntos
Cupriavidus necator , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Engenharia Metabólica , Oxirredutases/metabolismo , Carbono/metabolismo , Polímeros/metabolismo
10.
Biotechnol Bioeng ; 119(10): 2639-2668, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35781640

RESUMO

As an attractive and valuable platform chemical, 3-hydroxypropionic acid (3-HP) can be used to produce a variety of industrially important commodity chemicals and biodegradable polymers. Moreover, the biosynthesis of 3-HP has drawn much attention in recent years due to its sustainability and environmental friendliness. Here, we focus on recent advances, challenges, and metabolic engineering strategies in the biosynthesis of 3-HP. While glucose and glycerol are major carbon sources for its production of 3-HP via microbial fermentation, other carbon sources have also been explored. To increase yield and titer, synthetic biology and metabolic engineering strategies have been explored, including modifying pathway enzymes, eliminating flux blockages due to byproduct synthesis, eliminating toxic byproducts, and optimizing via genome-scale models. This review also provides insights on future directions for 3-HP biosynthesis.


Assuntos
Ácido Láctico , Engenharia Metabólica , Carbono , Glicerol/metabolismo , Ácido Láctico/análogos & derivados , Ácido Láctico/metabolismo
11.
Metab Eng ; 64: 146-153, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33571657

RESUMO

Carbon monoxide (CO) is a promising carbon source for producing value-added biochemicals via microbial fermentation. However, its microbial conversion has been challenging because of difficulties in genetic engineering of CO-utilizing microorganisms and, more importantly, maintaining CO consumption which is negatively affected by the toxicity of CO and accumulated byproducts. To overcome these issues, we devised mutualistic microbial consortia, co-culturing Eubacterium limosum and genetically engineered Escherichia coli for the production of 3-hydroxypropionic acid (3-HP) and itaconic acid (ITA). During the co-culture, E. limosum assimilated CO and produced acetate, a toxic by-product, while E. coli utilized acetate as a sole carbon source. We found that this mutualistic interaction dramatically stabilized and improved CO consumption of E. limosum compared to monoculture. Consequently, the improved CO consumption allowed successful production of 3-HP and ITA from CO. This study is the first demonstration of value-added biochemical production from CO using a microbial consortium. Moreover, it suggests that synthetic mutualistic microbial consortium can serve as a powerful platform for the valorization of CO.


Assuntos
Monóxido de Carbono , Consórcios Microbianos , Escherichia coli/genética , Eubacterium
12.
Metab Eng ; 65: 30-41, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33684594

RESUMO

One grand challenge for bioproduction of desired metabolites is how to coordinate cell growth and product synthesis. Here we report that a tryptophan operon-assisted CRISPR interference (CRISPRi) system can switch glycerol oxidation and reduction pathways in Klebsiella pneumoniae, whereby the oxidation pathway provides energy to sustain growth, and the reduction pathway generates 1,3-propanediol and 3-hydroxypropionic acid (3-HP), two economically important chemicals. Reverse transcription and quantitative PCR (RT-qPCR) showed that this CRISPRi-dependent switch affected the expression of glycerol metabolism-related genes and in turn improved 3-HP production. In shake-flask cultivation, the strain coexpressing dCas9-sgRNA and PuuC (an aldehyde dehydrogenase native to K. pneumoniae for 3-HP biosynthesis) produced 3.6 g/L 3-HP, which was 1.62 times that of the strain only overexpressing PuuC. In a 5 L bioreactor, this CRISPRi strain produced 58.9 g/L 3-HP. When circulation feeding was implemented to alleviate metabolic stress, biomass was substantially improved and 88.8 g/L 3-HP was produced. These results indicated that this CRISPRi-dependent switch can efficiently reconcile biomass formation and 3-HP biosynthesis. Furthermore, this is the first report of coupling CRISPRi system with trp operon, and this architecture holds huge potential in regulating gene expression and allocating metabolic flux.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Klebsiella pneumoniae , Glicerol , Klebsiella pneumoniae/genética , Engenharia Metabólica , Óperon/genética , Triptofano/genética
13.
Metab Eng ; 64: 95-110, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33493644

RESUMO

Methanol is assimilated through the serine cycle to generate acetyl-CoA without carbon loss. However, a highly active serine cycle requires high consumption of reducing equivalents and ATP, thereby leading to the impaired efficiency of methanol conversion to reduced chemicals. In the present study, a genome-scale flux balance analysis (FBA) predicted that the introduction of the heterologous ribulose monophosphate (RuMP) cycle, a more energy-efficient pathway for methanol assimilation, could theoretically increase growth rate by 31.3% for the model alphaproteobacterial methylotroph Methylorubrum extorquens AM1. Based on this analysis, we constructed a novel synergistic assimilation pathway in vivo by incorporating the RuMP cycle into M. extroquens metabolism with the intrinsic serine cycle. We demonstrated that the operation of the synergistic pathway could increase cell growth rate by 16.5% and methanol consumption rate by 13.1%. This strategy rewired the central methylotrophic metabolism through adjusting core gene transcription, leading to a pool size increase of C2 to C5 central intermediates by 1.2- to 3.6-fold and an NADPH cofactor improvement by 1.3-fold. The titer of 3-hydroxypropionic acid (3-HP), a model product in the newly engineered chassis of M. extorquens AM1, was increased to 91.2 mg/L in shake-flask culture, representing a 3.1-fold increase compared with the control strain with only the serine cycle. The final titer of 3-HP was significantly improved to 0.857 g/L in the fed-batch bioreactor, which was more competitive compared with the other 3-HP producers using methane and CO2 as C1 sources. Collectively, our current study demonstrated that engineering the synergistic methanol assimilation pathway was a promising strategy to increase the carbon assimilation and the yields of reduced chemicals in diverse host strains for C1 microbial cell factories.


Assuntos
Metanol , Methylobacterium extorquens , Acetilcoenzima A , Methylobacterium extorquens/genética , Pentoses
14.
Metab Eng ; 67: 365-372, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34333137

RESUMO

In metabolic engineering, enhanced production of value-added chemicals requires precise flux control between growth-essential competing and production pathways. Although advances in synthetic biology have facilitated the exploitation of a number of genetic elements for precise flux control, their use requires expensive inducers, or more importantly, needs complex and time-consuming processes to design and optimize appropriate regulator components, case-by-case. To overcome this issue, we devised the plug-in repressor libraries for target-specific flux control, in which expression levels of the repressors were diversified using degenerate 5' untranslated region (5' UTR) sequences employing the UTR Library Designer. After we validated a wide expression range of the repressor libraries, they were applied to improve the production of lycopene from glucose and 3-hydroxypropionic acid (3-HP) from acetate in Escherichia coli via precise flux rebalancing to enlarge precursor pools. Consequently, we successfully achieved optimal carbon fluxes around the precursor nodes for efficient production. The most optimized strains were observed to produce 2.59 g/L of 3-HP and 11.66 mg/L of lycopene, which were improved 16.5-fold and 2.82-fold, respectively, compared to those produced by the parental strains. These results indicate that carbon flux rebalancing using the plug-in library is a powerful strategy for efficient production of value-added chemicals in E. coli.


Assuntos
Escherichia coli , Engenharia Metabólica , Escherichia coli/genética , Biblioteca Gênica , Glucose , Licopeno
15.
Biotechnol Lett ; 43(1): 223-234, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32996029

RESUMO

OBJECTIVE: Glycerol-based biosynthesis of 3-hydroxypropionic acid (3-HP) in Klebsiella pneumoniae involves two reactions: glycerol conversion to 3-hydroxypropionaldehyde (3-HPA) by glycerol dehydratase, and 3-HPA conversion to 3-HP by aldehyde dehydrogenase (ALDH). The ALDH catalysis consumes a lot of cofactor nicotinamide adenine dinucleotide (NAD+), which constrains 3-HP production. RESULTS: Here we report that intensifying niacin-based biosynthesis of NAD+ can substantially enhance 3-HP production. We constructed tac promoter-driven NAD+ synthesis pathway in K. pneumoniae. The strain only overexpressing nicotinate phosphoribosyltransferase (PncB) showed 14.24% increase in the production of NAD+ relative to the stain harboring an empty vector. When PncB was coexpressed with PuuC (one of native ALDHs), the recombinant strain exhibited increased ALDH activity but slightly reduced 3-HP production due to plasmid burden. When 30 mg niacin l-1 (a substrate for biosynthesis of NAD+) was added into shake flask, the strain produced 0.55 g 3-HP l-1, which was 2.75 times that of the control. In a 5-L bioreactor, replenishment of niacin led to 36.43% increase of 3-HP production. CONCLUSIONS: These results indicated that intensifying niacin-based biosynthesis of NAD+ boosts 3-HP production.


Assuntos
Klebsiella pneumoniae , Ácido Láctico/análogos & derivados , NAD/metabolismo , Niacina/metabolismo , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Reatores Biológicos/microbiologia , Glicerol/metabolismo , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Ácido Láctico/metabolismo , Engenharia Metabólica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
16.
Food Microbiol ; 98: 103720, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33875197

RESUMO

Strains of Limosilactobacillus reuteri are used as starter and bioprotective cultures and contribute to the preservation of food through the production of fermentation metabolites lactic and acetic acid, and of the antimicrobial reuterin. Reuterin consists of acrolein and 3-hydroxypropionaldehyde (3-HPA), which can be further metabolized to 1,3-propanediol and 3-hydroxypropionic acid (3-HP). While reuterin has been the focus of many investigations, the contribution of 3-HP to the antimicrobial activity of food related reuterin-producers is unknown. We show that the antibacterial activity of 3-HP was stronger at pH 4.8 compared to pH 5.5 and 6.6. Gram-positive bacteria were in general more resistant against 3-HP and propionic acid than Gram-negative indicator strains including common food pathogens, while spoilage yeast and molds were not inhibited by ≤ 640 mM 3-HP. The presence of acrolein decreased the minimal inhibitory activity of 3-HP against E. coli indicating synergistic antibacterial activity. 3-HP was formed during the growth of the reuterin-producers, and by resting cells of L. reuteri DSM 20016. Taken together, this study shows that food-related reuterin producers strains synthesize a second antibacterial compound, which might be of relevance when strains are added as starter or bioprotective cultures to food products.


Assuntos
Anti-Infecciosos/farmacologia , Glicerol/metabolismo , Ácido Láctico/análogos & derivados , Lactobacillaceae/química , Ácido Acético/metabolismo , Anti-Infecciosos/química , Anti-Infecciosos/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Estabilidade de Medicamentos , Fermentação , Microbiologia de Alimentos , Gliceraldeído/análogos & derivados , Gliceraldeído/química , Gliceraldeído/metabolismo , Concentração de Íons de Hidrogênio , Ácido Láctico/química , Ácido Láctico/metabolismo , Ácido Láctico/farmacologia , Lactobacillaceae/crescimento & desenvolvimento , Lactobacillaceae/metabolismo , Propano/química , Propano/metabolismo
17.
World J Microbiol Biotechnol ; 37(7): 117, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34128152

RESUMO

3-Hydroxypropionic acid (3-HP) represents an economically important platform compound from which a panel of bulk chemicals can be derived. Compared with petroleum-dependent chemical synthesis, bioproduction of 3-HP has attracted more attention due to utilization of renewable biomass. This review outlines bacterial production of 3-HP, covering aspects of host strains (e.g., Escherichia coli and Klebsiella pneumoniae), metabolic pathways, key enzymes, and hurdles hindering high-level production. Inspired by the state-of-the-art advances in metabolic engineering and synthetic biology, we come up with protocols to overcome the hurdles constraining 3-HP production. The protocols range from rewiring of metabolic networks, alleviation of metabolite toxicity, to dynamic control of cell size and density. Especially, this review highlights the substantial contribution of microbial growth to 3-HP production, as we recognize the synchronization between cell growth and 3-HP formation. Accordingly, we summarize the following growth-promoting strategies: (i) optimization of fermentation conditions; (ii) construction of gene circuits to alleviate feedback inhibition; (iii) recruitment of RNA polymerases to overexpress key enzymes which in turn boost cell growth and 3-HP production. Lastly, we propose metabolic engineering approaches to simplify downstream separation and purification. Overall, this review aims to portray a picture of bacterial production of 3-HP.


Assuntos
Bactérias/crescimento & desenvolvimento , Vias Biossintéticas , Ácido Láctico/análogos & derivados , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Redes Reguladoras de Genes , Ácido Láctico/biossíntese , Engenharia Metabólica , Biologia Sintética
18.
Metab Eng ; 62: 150-160, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32911054

RESUMO

Carbon-conserving pathways have the potential of increasing product yields in biotechnological processes. The aim of this project was to investigate the functionality of a novel carbon-conserving pathway that produces 3 mol of acetyl-CoA from fructose-6-phosphate without carbon loss in the yeast Saccharomyces cerevisiae. This cyclic pathway relies on a generalist phosphoketolase (Xfspk), which can convert xylulose-5-phosphate, fructose-6-phosphate and sedoheptulose-7-phosphate (S7P) to acetyl phosphate. This cycle is proposed to overcome bottlenecks from the previously reported non-oxidative glycolysis (NOG) cycle. Here, in silico simulations showed accumulation of S7P in the NOG cycle, which was resolved by blocking the non-oxidative pentose phosphate pathway and introducing Xfspk and part of the riboneogenesis pathway. To implement this, a transketolase and transaldolase deficient S. cerevisiae was generated and a cyclic pathway, the Glycolysis AlTernative High Carbon Yield Cycle (GATHCYC), was enabled through xfspk expression and sedoheptulose bisphosphatase (SHB17) overexpression. Flux through the GATHCYC was demonstrated in vitro with a phosphoketolase assay on crude cell free extracts, and in vivo by constructing a strain that was dependent on a functional pathway to survive. Finally, we showed that introducing the GATHCYC as a carbon-conserving route for 3-hydroxypropionic acid (3-HP) production resulted in a 109% increase in 3-HP titers when the glucose was exhausted compared to the phosphoketolase route only.


Assuntos
Aldeído Liases , Saccharomyces cerevisiae , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Glicólise/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
19.
Metab Eng ; 59: 142-150, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32061966

RESUMO

We engineered a type II methanotroph, Methylosinus trichosporium OB3b, for 3-hydroxypropionic acid (3HP) production by reconstructing malonyl-CoA pathway through heterologous expression of Chloroflexus aurantiacus malonyl-CoA reductase (MCR), a bifunctional enzyme. Two strategies were designed and implemented to increase the malonyl-CoA pool and thus, increase in 3HP production. First, we engineered the supply of malonyl-CoA precursors by overexpressing endogenous acetyl-CoA carboxylase (ACC), substantially enhancing the production of 3HP. Overexpression of biotin protein ligase (BPL) and malic enzyme (NADP+-ME) led to a ∼22.7% and ∼34.5% increase, respectively, in 3HP titer in ACC-overexpressing cells. Also, the acetyl-CoA carboxylation bypass route was reconstructed to improve 3HP productivity. Co-expression of methylmalonyl-CoA carboxyltransferase (MMC) of Propionibacterium freudenreichii and phosphoenolpyruvate carboxylase (PEPC), which provides the MMC precursor, further improved the 3HP titer. The highest 3HP production of 49 mg/L in the OB3b-MCRMP strain overexpressing MCR, MMC and PEPC resulted in a 2.4-fold improvement of titer compared with that in the only MCR-overexpressing strain. Finally, we could obtain 60.59 mg/L of 3HP in 42 h using the OB3b-MCRMP strain through bioreactor operation, with a 6.36-fold increase of volumetric productivity compared than that in the flask cultures. This work demonstrates metabolic engineering of type II methanotrophs, opening the door for using type II methanotrophs as cell factories for biochemical production along with mitigation of greenhouse gases.


Assuntos
Proteínas de Bactérias , Chloroflexus/genética , Ácido Láctico/análogos & derivados , Engenharia Metabólica , Metano/metabolismo , Methylosinus trichosporium , Oxirredutases , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ácido Láctico/metabolismo , Methylosinus trichosporium/genética , Methylosinus trichosporium/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo
20.
Biotechnol Bioeng ; 117(8): 2446-2459, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32437011

RESUMO

Most expression systems are tailored for model organisms rather than nonmodel organisms. However, heterologous gene expression in model organisms constrains the innate advantages of original strain carrying gene of interest. In this study, T7 expression system was developed in nonmodel bacterium Klebsiella pneumoniae for production of chemicals. First, we engineered a recombinant K. pneumoniae strain harboring two vectors. One vector was used to express T7 RNA polymerase (T7 RNAP) which would drive the expression of egfp in the other vector. This recombinant strain demonstrated 15.73-fold of fluorescence relative to wild-type K. pneumoniae and showed similar level of fluorescence to recombinant Escherichia coli overexpressing egfp. When egfp was replaced by puuC, an endogenous aldehyde dehydrogenase catalyzing 3-hydroxypropionic acid (3-HP) biosynthesis in K. pneumoniae, the recombinant strain coexpressing T7 RNAP and PuuC showed high-level PuuC expression. In shake-flask cultivation, this recombinant strain produced 1.72 g/L 3-HP in 24 hr, which was 3.24 times that of wild-type K. pneumoniae (0.53 g/L). To mitigate plasmid burden, the vector expressing T7 RNAP was eliminated, but the T7 RNAP expression cassette was integrated into K. pneumoniae genome. The resulting strain harboring only PuuC expression vector produced 2.44 g/L 3-HP in 24 hr under shake-flask conditions, which was 1.46 times that of the strain harboring both T7 RNAP and PuuC expression vectors. In bioreactor cultivation, this strain generated 67.59 g/L 3-HP and did not show significantly halted growth. Overall, these results indicate that the engineered T7 expression system functioned efficiently in K. pneumoniae. This study provides a paradigm for the development of T7 expression system in prokaryotes.


Assuntos
RNA Polimerases Dirigidas por DNA , Klebsiella pneumoniae , Engenharia Metabólica/métodos , Proteínas Recombinantes , Proteínas Virais , Reatores Biológicos/microbiologia , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Ácido Láctico/análogos & derivados , Ácido Láctico/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA