Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Comput Struct Biotechnol J ; 20: 218-229, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35024094

RESUMO

Cell-free protein synthesis (CFPS) reactions have grown in popularity with particular interest in applications such as gene construct prototyping, biosensor technologies and the production of proteins with novel chemistry. Work has frequently focussed on optimising CFPS protocols for improving protein yield, reducing cost, or developing streamlined production protocols. Here we describe a statistical Design of Experiments analysis of 20 components of a popular CFPS reaction buffer. We simultaneously identify factors and factor interactions that impact on protein yield, rate of reaction, lag time and reaction longevity. This systematic experimental approach enables the creation of a statistical model capturing multiple behaviours of CFPS reactions in response to components and their interactions. We show that a novel reaction buffer outperforms the reference reaction by 400% and importantly reduces failures in CFPS across batches of cell lysates, strains of E. coli, and in the synthesis of different proteins. Detailed and quantitative understanding of how reaction components affect kinetic responses and robustness is imperative for future deployment of cell-free technologies.

2.
Int J Biol Macromol ; 178: 1-10, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33631257

RESUMO

Entamoeba histolytica phosphoserine phosphatase (EhPSP), a regulatory enzyme in the serine biosynthetic pathway, is also a structural homolog of cofactor-dependent phosphoglycerate mutase (dPGM). However, despite sharing many of its catalytic residues with dPGM, EhPSP displays no significant mutase activity. In the current work, we determined a crystal structure of EhPSP in complex with 3-PGA to 2.5 Å resolution and observed striking differences between the orientation of 3-PGA bound to EhPSP and that to its other homologous structures. We also performed computational modeling and simulations of the intermediate 2,3-bisphosphoglyceric acid into the active site of EhPSP to better understand its mechanistic details. Based on these results and those of a similar study with the dPGMs from E. coli and B. pseudomallei, the affinity of EhPSP for 2,3-BPG was concluded to be lower than those of the other proteins. Moreover, a different set of 2,3-BPG interacting residues was observed in EhPSP compared to dPGMs, with all of the crucial interacting residues of dPGMs either missing or substituted with weakly interacting residues. This study has expanded our understanding, at the structural level, of the inability of EhPSP to catalyze the mutase reaction and has strengthened earlier conclusions indicating it to be a true phosphatase.


Assuntos
Entamoeba histolytica/enzimologia , Ácidos Glicéricos/química , Fosfoglicerato Mutase/química , Monoéster Fosfórico Hidrolases/química , Proteínas de Protozoários/química , Domínio Catalítico , Modelos Moleculares , Conformação Proteica , Alinhamento de Sequência
3.
Acta Pharm Sin B ; 10(1): 61-78, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31993307

RESUMO

Solute carrier (SLC) transporters meditate many essential physiological functions, including nutrient uptake, ion influx/efflux, and waste disposal. In its protective role against tumors and infections, the mammalian immune system coordinates complex signals to support the proliferation, differentiation, and effector function of individual cell subsets. Recent research in this area has yielded surprising findings on the roles of solute carrier transporters, which were discovered to regulate lymphocyte signaling and control their differentiation, function, and fate by modulating diverse metabolic pathways and balanced levels of different metabolites. In this review, we present current information mainly on glucose transporters, amino-acid transporters, and metal ion transporters, which are critically important for mediating immune cell homeostasis in many different pathological conditions.

4.
FEBS Lett ; 587(17): 2860-7, 2013 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-23856461

RESUMO

Enzymology tends to focus on highly specific effects of substrates, allosteric modifiers, and products occurring at low concentrations, because these are most informative about the enzyme's catalytic mechanism. We hypothesized that at relatively high in vivo concentrations, important molecular monitors of the state of living cells, such as ATP, affect multiple enzymes of the former and that these interactions have gone unnoticed in enzymology. We test this hypothesis in terms of the effect that ATP, ADP, and AMP might have on the major free-energy delivering pathway of the yeast Saccharomyces cerevisiae. Assaying cell-free extracts, we collected a comprehensive set of quantitative kinetic data concerning the enzymes of the glycolytic and the ethanol fermentation pathways. We determined systematically the extent to which the enzyme activities depend on the concentrations of the adenine nucleotides. We found that the effects of the adenine nucleotides on enzymes catalysing reactions in which they are not directly involved as substrate or product, are substantial. This includes effects on the Michaelis-Menten constants, adding new perspective on these, 100 years after their introduction.


Assuntos
Nucleotídeos de Adenina/química , Glicólise , Modelos Biológicos , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Nucleotídeos de Adenina/fisiologia , Regulação Alostérica , Fermentação , Cinética , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Frações Subcelulares/enzimologia , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA