RESUMO
This work aims to study the effect of radiolytic species induced by water radiolysis on the passive behavior of 316L stainless steel. For this purpose, the stainless steel/neutral and aerated 0.02â M Na2SO4, electrolyte solution interface was irradiated with proton beams. A wide range of energies between 2 and 16â MeV was selected, varying the maximum of the energy deposition between 0.5 and 122â µm in water from the interface. The irradiation experiments were performed at the CEMHTI cyclotron in Orléans and the 4 MV Van de Graaff accelerator at IP2I in Lyon (France). A dedicated irradiation device implemented with a 3-electrode cell dedicated to perform electrochemical measurements allows to measure the surface reactivity of the stainless steel as a function of the irradiation conditions. Results show that whatever the beam energy, the corrosion potential remains unchanged. It indicates that the very short-lived, highly reactive radiolytic species drive the corrosion potential and not only the recombination products such H2O2 or H2. The stainless steel remains in the passive state whatever the irradiation conditions. However, it is shown that, during irradiation, the passive film is less protective. This evolution is attributed to radiolysis of bound water molecules in the passive film.
RESUMO
A three-dimensional (3D) microstructural volume is reconstructed from a stack of two-dimensional sections which was obtained by serial sectioning coupled with electron back scattering diffraction (EBSD) mapping of a 316L austenitic stainless steel. A new alignment algorithm named linear translation by minimising the indicator (LTMI) is proposed to reduce the translational misalignments between adjacent sections by referencing to coherent twin boundaries which are flat and lying on {111} planes. The angular difference between the measured orientation of a flat twin boundary and that of the {111} plane is used as an indicator of the accuracy of the alignment operations. This indicator is minimised through linear translations of the centroids of triangular facets, which constitute grain boundaries at a distance not restricted by the in-plane step size of the EBSD maps. And hence the systematic trend in the translational misalignments can be effectively reduced. The LTMI alignment procedure proposed herein effectively corrects the misalignments remained by other methods on a 3D-EBSD data prepared using serial sectioning methods. The accuracy in distinguishing between coherent and incoherent twin boundaries is significantly improved.
RESUMO
The interventional therapy of vascular stent implantation is a popular treatment method for cardiovascular stenosis and blockage. However, traditional stent manufacturing methods such as laser cutting are complex and cannot easily manufacture complex structures such as bifurcated stents, while three-dimensional (3D) printing technology provides a new method for manufacturing stents with complex structure and personalized designs. In this paper, a cardiovascular stent was designed, and printed using selective laser melting technology and 316L stainless steel powder of 0-10 µm size. Electrolytic polishing was performed to improve the surface quality of the printed vascular stent, and the expansion behavior of the polished stent was assessed by balloon inflation. The results showed that the newly designed cardiovascular stent could be manufactured by 3D printing technology. Electrolytic polishing removed the attached powder and reduced the surface roughness Ra from 1.36 µm to 0.82 µm. The axial shortening rate of the polished bracket was 4.23% when the outside diameter was expanded from 2.42 mm to 3.63 mm under the pressure of the balloon, and the radial rebound rate was 2.48% after unloading. The radial force of polished stent was 8.32 N. The 3D printed vascular stent can remove the surface powder through electrolytic polishing to improve the surface quality, and show good dilatation performance and radial support performance, which provides a reference for the practical application of 3D printed vascular stent.
Assuntos
Sistema Cardiovascular , Aço Inoxidável , Humanos , Pós , Constrição PatológicaRESUMO
OBJECTIVES: Improving biocompatibility of metallic alloy biomaterials has been of great interest to prevent implant associated-diseases, such as stent thrombosis. Herein a simple and efficient procedure was designed to biofunctionalize a biomaterial surface by isolating a SUS316L stainless steel binding peptide. RESULTS: After three rounds of phage panning procedure, 12 mer peptide (SBP-A; VQHNTKYSVVIR) was identified as SUS316L-binding peptide. The SBP-A peptide formed a stable bond to a SUS316L modified surface and was not toxic to HUVECs. The SBP-A was then used for anti-ICAM antibody modification on SUS316L to construct a vascular endothelial cell-selective surface. The constructed surface dominantly immobilized vascular endothelial cells to smooth muscle cells, demonstrating that the SBP-A enabled simple immobilization of biomolecules without disturbing their active biological function. CONCLUSIONS: The SUS316L surface was successfully biofunctionalized using the novel isolated peptide SBP-A, showing its potential as an ideal interface molecule for stent modification. This is the first report of material binding peptide-based optimal surface functionalization to promote endothelialisation. This simple and efficient biofunctionalization procedure is expected to contribute to the development of biocompatible materials.
Assuntos
Materiais Biocompatíveis/química , Ferro/química , Peptídeos/química , Ligas/química , Anticorpos/química , Materiais Biocompatíveis/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Teste de Materiais , Especificidade de Órgãos , Biblioteca de Peptídeos , Peptídeos/farmacologia , Aço Inoxidável/química , Propriedades de SuperfícieRESUMO
The present study evaluated biofilm growth in AISI 316L stainless steel tubes for seawater-cooled exchanger-condensers that had four different arithmetic mean surface roughness values ranging from 0.14 µm to 1.2 µm. The results of fluid frictional resistance and heat transfer resistance regarding biofilm formation in the roughest surface showed increases of 28.2% and 19.1% respectively, compared with the smoothest surface. The biofilm thickness taken at the end of the experiment showed variations of up to 74% between the smoothest and roughest surfaces. The thermal efficiency of the heat transfer process in the tube with the roughest surface was 17.4% greater than that in the tube with the smoothest surface. The results suggest that the finish of the inner surfaces of the tubes in heat exchanger-condensers is critical for improving energy efficiency and avoiding biofilm adhesion. This may be utilised to reduce biofilm adhesion and growth in the design of heat exchanger-condensers.
Assuntos
Biofilmes/crescimento & desenvolvimento , Incrustação Biológica/prevenção & controle , Água do Mar , Aço Inoxidável/química , Temperatura Alta , Propriedades de Superfície , Condutividade Térmica , Movimentos da ÁguaRESUMO
BACKGROUND: The existing EU nickel restriction does not sufficiently protect the population from skin exposure to nickel. Better understanding is needed of the extent to which short and frequent contact with nickel-releasing items contributes to nickel deposition on skin. OBJECTIVES: To quantify nickel skin exposure from short and frequent contact with nickel-releasing materials. MATERIALS/METHODS: Sequences of short contact events were assessed in (i) touch tests for measurement of nickel skin dose, (ii) wipe tests to similarly quantify the nickel release during a touch, and (iii) immersion tests in artificial sweat, for nickel-containing alloys and pure nickel. RESULTS: Nickel skin doses from a single touch were 0.024-4.7 µg/cm(2) for all materials. Touching or wiping five untouched surfaces resulted in more accumulated nickel than five repeated touches of the same surface. The released amounts of nickel were generally lower at immersion, but increased with the number of repeated immersion periods. CONCLUSIONS: Nickel skin doses were quantified after one single touch for all study materials. Touch tests, and potentially wipe tests as a proxy for skin dose measurements, are preferred to immersion tests for the assessment of short and frequent skin contact with nickel.
Assuntos
Dermatite Alérgica de Contato/etiologia , Níquel/efeitos adversos , Dermatite Alérgica de Contato/diagnóstico , Humanos , Níquel/administração & dosagem , SuorRESUMO
Copper-containing stainless steel (SS) has been reported to mitigate biofilms in industrial and clinical environments. However, the impact of copper released from copper-containing SS in natural seawater on biofilms and corrosion is still unclear. In this study, three kinds of 316L SS were immersed in natural seawater for 6 months, and the pitting depth decreased in the order: 316L-Cu SS (annealed) > 316L SS > 316L-Cu SS (aged). The biofilm thickness and number of sessile cells on the surface of 316L-Cu SS (annealed) and 316L SS were similar but notably greater than those of 316L-Cu SS (aged). Furthermore, the results of the community analysis indicated that the addition of copper in 316L-Cu SS (aged) reduced the diversity and richness of the microbial community, resulting in a significant reduction in the number of genera constituting the biofilms. Copper ions exhibit a broad-spectrum bactericidal effect, effectively reducing the abundance of dominant populations and microbial genera in the biofilms, thereby mitigating pitting corrosion induced by microorganisms. In addition, the PCoA scatter plot showed that time also played an important role in the regulation of microbial community structure.
Assuntos
Cobre , Aço Inoxidável , Cobre/química , Aço Inoxidável/química , Corrosão , Biofilmes , Água do MarRESUMO
In this study, a thorough investigation of the microstructures and tensile properties of 316L stainless steel fabricated via laser powder bed fusion (L-PBF) was done. 316L stainless steel specimens with two different thicknesses of 1.5 mm and 4.0 mm fabricated under similar conditions were utilized. Microstructural characterization was performed using optical microscopy (OM) and scanning electron microscopy (SEM) equipped with electron backscatter diffraction (EBSD). Melt pools and cellular structures were observed using OM, whereas EBSD was utilized to obtain the grain size, grain boundary characteristics, and crystallographic texture. The 1.5 mm thick sample demonstrated a yield strength (YS) of 538.42 MPa, ultimate tensile strength (UTS) of 606.47 MPa, and elongation to failure of 69.88%, whereas the 4.0 mm thick sample had a YS of 551.21 MPa, UTS of 619.58 MPa, and elongation to failure of 73.66%. These results demonstrated a slight decrease in mechanical properties with decreasing thickness, with a 2.4% reduction in YS, 2.1% reduction in UTS, and 5.8% reduction in elongation to failure. In addition to other microstructural features, the cellular structures were observed to be the major contributors to the high mechanical properties. Using the inverse pole figure (IPF) maps, both thicknesses depicted a crystallographic texture of {001} <101> in their as-built state. However, when subjected to tensile loads, texture transitions to {111} <001> and {111} <011> were observed for the 1.5 mm and 4.0 mm samples, respectively. Additionally, EBSD analysis revealed the pre-existence of high-density dislocation networks and a high fraction of low-angle grain boundaries. Interestingly, twinning was observed, suggesting that the plastic deformation occurred through dislocation gliding and deformation twinning.
RESUMO
The process of forming metal components through selective laser melting (SLM) results in inherent spherical effects, powder adhesion, and step effects, which collectively lead to surface roughness in stainless steel, limiting its potential for high-end applications. This study utilizes a laser-electrochemical hybrid process to polish SLM-formed 316L stainless steel (SS) and examines the influence of process parameters such as laser power and scanning speed on surface roughness and micro-morphology. A comparative analysis of the surface roughness, microstructure, and wear resistance of SLM-formed 316L SS polished using laser, electrochemical, and laser-electrochemical hybrid processes is presented. The findings demonstrate that, compared to laser and electrochemical polishing alone, the laser-electrochemical hybrid polishing exhibits the most significant improvement in surface roughness and the highest material wear resistance. Additionally, the hybrid process results in a surface free of cracks and only a small number of tiny corrosion holes, making it more suitable for polishing the surface of 316L SS parts manufactured via SLM.
RESUMO
A well-developed-multiwall carbon nanotube (f-MWCNT)/biphasic calcium phosphate (BCP) composites were synthesized using ultrasonication method for orthopedic implantation applications. The formation of composites and its phase was confirmed by using X-ray diffraction. The presence of various functional groups was identified by using Fourier transform infra-red (FT-IR) spectroscopy. The presence of f-MWCNT was confirmed by Raman spectroscopy. High-resolution transmission electron microscopy (HR-TEM) analysis revealed that BCP units were bound by the surface of f-MWCNTs. The synthesized composites were coated on medical grade 316L stainless steel substrates using electro deposition technique. To determine its corrosion resistance characteristics, the developed substrates were exposed to a simulated bodily fluid (SBF) solution for 0, 4, and 7 days. These results strongly suggest that the coated composites can be utilized for bone tissue repair.
Assuntos
Líquidos Corporais , Hidroxiapatitas , Aço Inoxidável , Aço Inoxidável/química , Teste de Materiais , Corrosão , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
In this study, 316L austenitic stainless-steel (ASS) plates fabricated using an additive manufacturing (AM) process were joined using tungsten inert gas (TIG) and laser welding techniques. The 316L ASS plates were manufactured using a laser powder bed fusion (LPBF) technique, with building orientations (BOs) of 0° and 90°, designated as BO-0 and BO-90, respectively. The study examined the relationship between indentation resistance and microstructure evolution within the fusion zone (FZ) of the welded joints considering the effects of different BOs. Microstructural analysis of the weldments was conducted using optical and laser confocal scanning microscopes, while hardness measurements were obtained using a micro-indentation hardness (HIT) technique via the Berkovich approach. The welded joints produced with the TIG technique exhibited FZs with a greater width than those created by laser welding. The microstructure of the FZs in TIG-welded joints was characterized by dendritic austenite and 1-4 wt.% δ-ferrite phases, while the corresponding microstructure in laser-welded joints consisted of a single austenite phase with cellular structures. Additionally, the grain size values of FZs produced using the laser welding technique were lower than those produced using the TIG technique. Therefore, TIG-welded joints showcased hardness values lower than those welded by laser welding. Furthermore, welded joints with the BO-90 orientation displayed the greatest cooling rates following welding processing, leading to FZs with hardness values greater than BO-0. For instance, the FZs of TIG-welded joints with BO-0 and BO-90 had HIT values of 1.75 ± 0.22 and 2.1 ± 0.09 GPa, whereas the corresponding FZs produced by laser welding had values of 1.9 ± 0.16 and 2.35 ± 0.11 GPa, respectively. The results have practical implications for the design and production of high-performance welded components, providing insights that can be applied to improve the efficiency and quality of additive manufacturing and welding processes.
RESUMO
This study developed a new metallography-property relationship neural network (MPR-Net) to predict the relationship between the microstructure and mechanical properties of 316L stainless steel built by laser powder bed fusion (LPBF). The accuracy R2 of MPR-Net was 0.96 and 0.91 for tensile strength and Vickers hardness predictions, respectively, based on optical metallurgy images. Feature visualisation methods, such as gradient-weighted class activation mapping (Grad-CAM) and clustering, were employed to interpret the abstract features within the MPR-Net, providing insights into the molten pool morphology and grain formation mechanisms during the LPBF process. Experimental results showed that the optimal process parameters-190 W laser power and 700 mm/s scanning speed-yielded a maximum tensile strength of 762.83 MPa and a Vickers hardness of 253.07 HV0.2 with nearly full densification (99.97%). The study marks the first application of a convolutional neural network (MPR-Net) to predict the mechanical properties of 316L stainless steel samples manufactured through laser powder bed fusion (LPBF) based on metallography. It innovatively employs techniques such as gradient-weighted class activation mapping (Grad-CAM), spatial coherence testing, and clustering to provide deeper insights into the workings of the machine learning model, enhancing the interpretability of complex neural network decisions in material science.
RESUMO
Laser powder bed fusion (LPBF) of complex-structure 316L stainless steel (316L ss) parts has a wide application prospects in aerospace, biomedical, and defense industry fields. However, the surface roughness (Ra) of the LPBF sample is unsatisfactory due to the process characteristics of layer-by-layer selective melting and cumulative forming, which limits its applications in the engineering field. Herein, a gradient voltage electrochemical polishing strategy is proposed based on the characteristics of electrochemical polishing technology, which can polish complex structures. The mechanisms of polishing process parameters and polishing strategy on the surface finish of LPBF parts are investigated. The gradient voltage polishing strategy is extended to complex structures, and the Ra of the inner surfaces of square and round tubes are successfully reduced to about 1 µm. The gradient electrochemical polishing process for surface finish post-treatment of LPBF parts can broaden the engineering applications of complex-structure metal parts.
RESUMO
In this study, to improve the fatigue strength of the LDED (laser-directed energy deposition) 316L stainless steel, an in situ ultrasonic rolling technology is developed to assist the laser-directed energy deposition process (LDED-UR). The microstructural characteristics and fatigue behavior are comprehensively discussed. The results show that the average size of pores of the LDED-UR alloy is about 10.2 µm, which is much smaller than that of the LDED alloy (34.1 µm). Meanwhile, the density of the LDED alloy is also enhanced from 98.26% to 99.27% via the in situ ultrasonic rolling. With the application of the in situ ultrasonic rolling, the grains are transformed into fully equiaxed grains, and their average grain size is greatly reduced from 84.56 µm to 26.93 µm. The fatigue limit of the LDED-UR alloy is increased by 29% from 210 MPa (LDED alloy) to 270 MPa, which can be ascribed to the decreased porosity and the fine grains. In particular, the crack initiation site of the LDED alloy is located at the surfaces, while it is nucleated from the sub-surface for the LDED-UR alloy. This is mainly attributed to the compression residual stress induced by the in situ ultrasonic rolling. This research offers a valuable understanding of the failure mechanisms in additively manufactured metals, guiding the development of effective strategies to improve their fatigue threshold under severe operating conditions.
RESUMO
The results of experimental studies in the manufacture of components of the supporting structure of the first wall panel, carried out as part of the manufacture of a model of the International Thermonuclear Experimental Reactor (ITER) using laser welding technology, are presented. The influence of laser welding modes on the quality of formation, microstructure characteristics, and mechanical properties of a welded joint made of 10 mm thick 316L steel was studied. A coaxial nozzle was designed and manufactured to protect the weld pool with a curved trajectory. The mechanical properties of the welded joint are 98-100% that of the base metal, and the microhardness of the welded joint and base metal is in the range of 180-230 HV. It was established that the lower part of the weld metal on the fusion line has transcrystalline grains and differs in δ-ferrite content; due to a high welding speed, the ratio of the depth to the width of the welding seam is 14 times. The width of the rectilinear part of the seam is 15-20% larger than its curved part.
RESUMO
In the laser powder bed fusion process, the melting-solidification characteristics of 316L stainless steel have a great effect on the workpiece quality. In this paper, a multi-physics model was constructed using the finite volume method (FVM) to simulate the melting-solidification process of a 316L powder bed via laser powder bed fusion. In this physical model, the phase change process, the influence of temperature gradient on surface tension of molten pool, and the influence of recoil pressure caused by the metal vapor on molten pool surface were considered. Using this model, the effects of laser scanning speed, hatch space, and laser power on temperature distribution, keyhole depth, and workpiece quality were studied. This study can be used to guide the optimization of process parameters, which is beneficial to the improvement of workpiece quality.
RESUMO
In the present paper, the effect of the evolution of primary water chemistry during power operation on the corrosion rate and conduction mechanism of oxide films on stainless steel is studied by in situ impedance spectroscopy at 300 °C/9 MPa during 1-week exposure periods in an autoclave connected to a recirculation loop. At the end of the exposure period, the samples were anodically polarized in a wide range of potentials to evaluate the stability of the passive oxide. Separate samples of the same steel were simultaneously exposed to the coolant and subsequently analyzed by glow discharge optical emission spectroscopy (GDOES) in order to estimate the thickness and the in-depth composition of the formed oxides. Impedance data were quantitatively interpreted using the mixed-conduction model for oxide films (MCM) to estimate the rates of metal oxidation at the alloy/oxide interface, oxide dissolution and restructuring at the film/coolant interface, and ion transport in the protective corrosion layer.
RESUMO
Periodic truss-based lattice materials, a particular subset of cellular solids that generally have superior specific properties as compared to monolithic materials, offer regularity and predictability that irregular foams do not. Significant advancements in alternative technologies-such as additive manufacturing-have allowed for the fabrication of these uniquely complex materials, thus boosting their research and development within industries and scientific communities. However, there have been limitations in the comparison of results for these materials between different studies reported in the literature due to differences in analysis approaches, parent materials, and boundary and initial conditions considered. Further hindering the comparison ability was that the literature generally only focused on one or a select few topologies. With a particular focus on the crashworthiness of lattice topologies, this paper presents a comprehensive study of the impact performance of 24 topologies under dynamic impact loading. Using steel alloy parent material (manufactured using Selective Laser Melting), a numerical study of the impact performance was conducted with 16 different impact energy-speed pairs. It was possible to observe the overarching trends in crashworthiness parameters, including plateau stress, densification strain, impact efficiency, and absorbed energy for a wide range of 3D lattice topologies at three relative densities. While there was no observed distinct division between the results of bending and stretching topologies, the presence of struts aligned in the impact direction did have a significant effect on the energy absorption efficiency of the lattice; topologies with struts aligned in that direction had lower efficiencies as compared to topologies without.
RESUMO
Laser powder bed fusion (L-PBF) is one of the most promising additive manufacturing technologies for creating customised 316L Stainless Steel (SS) implants with biomimetic characteristics, controlled porosity, and optimal structural and functional properties. However, the behaviour of as-fabricated 3D 316L SS structures without any surface finishing in environments that simulate body fluids remains largely unknown. To address this knowledge gap, the present study investigates the surface characteristics, the internal porosity, the corrosion in simulated body fluid (SBF), and the mechanical properties of as-fabricated 316L SS structures manufactured by L-PBF with rhombitruncated cuboctahedron (RTCO) unit cells with two distinct relative densities (10 and 35%). The microstructural analysis confirmed that the RTCO structure has a pure austenitic phase with a roughness of ~20 µm and a fine cellular morphology. The micro-CT revealed the presence of keyholes and a lack of fusion pores in both RTCO structures. Despite the difference in the internal porosity, the mechanical properties of both structures remain within the range of bone tissue and in line with the Gibson and Ashby model. Additionally, the as-fabricated RTCO structures demonstrated passive corrosion behaviour in the SBF solution. Thus, as-fabricated porous structures are promising biomaterials for implants due to their suitable surface roughness, mechanical properties, and corrosion resistance, facilitating bone tissue growth.
RESUMO
In this work, we propose a methodology to develop printability maps for the laser powder bed fusion of AISI 316L stainless steel. Regions in the process space associated with different defect types, including lack of fusion, balling, and keyhole formation, have been considered as a melt pool geometry function, determined using a finite element method model containing temperature-dependent thermophysical properties. Experiments were performed to validate the printability maps, showing a reliable correlation between experiments and simulations. The validated simulation model was then applied to collect the data by varying laser scanning speed, laser power, powder layer thickness, and powder bed preheating temperature. Following this, the collected data were used to train and test the adaptive neuro-fuzzy interference system (ANFIS)-based machine learning model. The validated ANFIS model was used to develop printability maps by correlating the melt pool characteristics to the defect types. The smart printability maps produced by the proposed methodology can be used to identify the processing window to attain defects-free components, thus attaining dense parts.