Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36361956

RESUMO

In vitro models of corticogenesis from pluripotent stem cells (PSCs) have greatly improved our understanding of human brain development and disease. Among these, 3D cortical organoid systems are able to recapitulate some aspects of in vivo cytoarchitecture of the developing cortex. Here, we tested three cortical organoid protocols for brain regional identity, cell type specificity and neuronal maturation. Overall, all protocols gave rise to organoids that displayed a time-dependent expression of neuronal maturation genes such as those involved in the establishment of synapses and neuronal function. Comparatively, guided differentiation methods without WNT activation generated the highest degree of cortical regional identity, whereas default conditions produced the broadest range of cell types such as neurons, astrocytes and hematopoietic-lineage-derived microglia cells. These results suggest that cortical organoid models produce diverse outcomes of brain regional identity and cell type specificity and emphasize the importance of selecting the correct model for the right application.


Assuntos
Organoides , Células-Tronco Pluripotentes , Humanos , Células-Tronco Pluripotentes/metabolismo , Diferenciação Celular , Neurônios/metabolismo , Encéfalo
2.
Ageing Res Rev ; 96: 102256, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38460555

RESUMO

Alzheimer's disease (AD) poses a complex challenge, with abnormal protein accumulation in the brain causing memory loss and cognitive decline. Traditional models fall short in AD research, prompting interest in 3D brain organoids (BOs) from human stem cells. These findings hold promise for unveiling the mechanisms of AD, especially in relation to aging. However, an understanding of the aging impact of AD remains elusive. BOs offer insight but face challenges. This review delves into the role of BOs in deciphering aging-related AD and acknowledges limitations. Strategies to enhance BOs for accurate aging modeling in AD brains are suggested. Strengthened by molecular advancements, BOs have the potential to uncover the aging phenotype, advancing AD research.


Assuntos
Doença de Alzheimer , Humanos , Encéfalo , Envelhecimento , Organoides , Fenótipo
3.
Cells ; 12(18)2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37759499

RESUMO

Bilirubin-induced neurological damage (BIND), which might progress to kernicterus, occurs as a consequence of defects in the bilirubin conjugation machinery, thus enabling albumin-unbound free bilirubin (BF) to cross the blood-brain barrier and accumulate within. A defect in the UGT1A1 enzyme-encoding gene, which is directly responsible for bilirubin conjugation, can cause Crigler-Najjar syndrome (CNS) and Gilbert's syndrome. We used human-induced pluripotent stem cell (hiPSC)-derived 3D brain organoids to model BIND in vitro and unveil the molecular basis of the detrimental effects of BF in the developing human brain. Healthy and patient-derived iPSCs were differentiated into day-20 brain organoids, and then stimulated with 200 nM BF. Analyses at 24 and 72 h post-treatment point to BF-induced neuro-inflammation in both cell lines. Transcriptome, associated KEGG, and Gene Ontology analyses unveiled the activation of distinct inflammatory pathways, such as cytokine-cytokine receptor interaction, MAPK signaling, and NFκB activation. Furthermore, the mRNA expression and secretome analysis confirmed an upregulation of pro-inflammatory cytokines such as IL-6 and IL-8 upon BF stimulation. This novel study has provided insights into how a human iPSC-derived 3D brain organoid model can serve as a prospective platform for studying the etiology of BIND kernicterus.


Assuntos
Síndrome de Crigler-Najjar , Células-Tronco Pluripotentes Induzidas , Kernicterus , Humanos , Encéfalo , Citocinas , Bilirrubina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA