Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Development ; 149(23)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36305490

RESUMO

Significant efforts are ongoing to develop refined differentiation protocols to generate midbrain dopamine (DA) neurons from pluripotent stem cells for application in disease modeling, diagnostics, drug screening and cell-based therapies for Parkinson's disease. An increased understanding of the timing and molecular mechanisms that promote the generation of distinct subtypes of human midbrain DA during development will be essential for guiding future efforts to generate molecularly defined and subtype-specific DA neurons from pluripotent stem cells. Here, we use droplet-based single-cell RNA sequencing to transcriptionally profile the developing human ventral midbrain (VM) when the DA neurons are generated (6-11 weeks post-conception) and their subsequent differentiation into functional mature DA neurons in primary fetal 3D organoid-like cultures. This approach reveals that 3D cultures are superior to monolayer conditions for their ability to generate and maintain mature DA neurons; hence, they have the potential to be used for studying human VM development. These results provide a unique transcriptional profile of the developing human fetal VM and functionally mature human DA neurons that can be used to guide stem cell-based therapies and disease modeling approaches in Parkinson's disease.


Assuntos
Doença de Parkinson , Células-Tronco Pluripotentes , Humanos , Doença de Parkinson/genética , Doença de Parkinson/terapia , Neurônios Dopaminérgicos , Mesencéfalo , Diferenciação Celular/genética
2.
Cancer Cell Int ; 24(1): 190, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822309

RESUMO

BACKGROUND: Cancer-associated fibroblasts (CAFs) are the major cellular component of the tumor microenvironment and are known to affect tumor growth and response to various treatments. This study was undertaken to investigate the crosstalk between tumor-matched or unmatched CAFs and head and neck squamous cell carcinoma (HNSCC) cells regarding tumor growth and treatment response. METHODS: Three HNSCC cell lines (LK0412, LK0902 and LK0923), were cocultured in 2D or in 3D with their tumor-matched CAFs, site matched CAFs from other tumors or normal oral fibroblasts (NOFs). Cell proliferation was assessed as the amount of Ki67 positive cells/ spheroid area in formalin-fixed- paraffin-embedded 3D spheroids stained with Ki67 antibody. Viability after seven days of cisplatin treatment was measured with CellTiter-Glo 3D Viability Assay. The mRNA expression of CAF-associated markers (ACTA2, COL1A2, FAP, PDGFRα, PDGFRß, PDPN, POSTN and S100A4) in CAFs before and after coculture with tumor cells as well as mRNA expression of CAF-induced genes (MMP1, MMP9 and FMOD) in tumor cells separated from CAFs after co-culture was measured with RT-qPCR. The expression of selected protein biomarkers was validated with immunohistochemistry based on previous mRNA expression results. RESULTS: The proliferation of the LK0412 and LK0902 tumor spheroids varied significantly when cocultured with different CAFs and NOFs as shown by Ki-67 positive cells. RT‒qPCR analysis revealed different molecular profile of the analyzed HNSCC-derived CAFs concerning the expression of CAF-associated markers. The interaction between CAFs and HNSCC cells was more pronounced after coculture with unmatched CAFs as shown by changes in mRNA expression pattern of CAF-specific markers. Additionally, the unmatched CAFs significantly upregulated the mRNA expression of MMP1, MMP9 and FMOD in tumor cells compared to tumor-matched CAFs. CONCLUSION: Our results indicate that tumor-matched CAFs are unique for each tumor and affect the proliferation and the gene/protein expression of tumor cells in a distinct manner. The interaction between tumor unmatched CAFs and HNSCC cells in the tumor spheroids is associated with significant changes in the mRNA expression of CAF-specific markers and significant increases in FMOD and MMP9 in tumor cells compared to when cocultured with tumor-matched CAFs. Taken together, our results show how important the selection of CAFs is to get a reliable in vitro model that mimics the patients' tumor.

3.
Int J Mol Sci ; 25(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38791178

RESUMO

Three-dimensional cell cultures have improved the evaluation of drugs for cancer therapy, due to their high similarity to solid tumors. In melanoma, autophagy appears to show a dual role depending on the progression of the disease. p62 protein has been proposed for the evaluation of autophagic flux since its expression is an indicator of the state of autophagy. Pentoxifylline (PTX) and Norcantharidin (NCTD) are drugs that have been shown to possess anticancer effects. In this work, we used B16F1 mouse melanoma cells in two-dimensional (2D) monolayer cultures and three-dimensional (3D) spheroids to test the effect of PTX and NCTD over the p62 expression. We analyzed the effect on p62 expression through Western blot and immunofluorescence assays. Our results indicate that PTX decreases p62 expression in both cell culture models, while Norcantharidin increases its expression in 3D cultures at 24 h. Therefore, these drugs could have a potential therapeutic use for the regulation of autophagy in melanoma, depending on the state of evolution of the disease.


Assuntos
Autofagia , Compostos Bicíclicos Heterocíclicos com Pontes , Pentoxifilina , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Animais , Camundongos , Pentoxifilina/farmacologia , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Melanoma Experimental/metabolismo , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/patologia , Técnicas de Cultura de Células , Proteína Sequestossoma-1/metabolismo , Proteína Sequestossoma-1/genética , Antineoplásicos/farmacologia , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo
4.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38256154

RESUMO

Three-dimensional (3D) hepatocyte models have become a research hotspot for evaluating drug metabolism and hepatotoxicity. Compared to two-dimensional (2D) cultures, 3D cultures are better at mimicking the morphology and microenvironment of hepatocytes in vivo. However, commonly used 3D culture techniques are not suitable for high-throughput drug screening (HTS) due to their high cost, complex handling, and inability to simulate cell-extracellular matrix (ECM) interactions. This article describes a method for rapid and reproducible 3D cell cultures with ECM-cell interactions based on 3D culture instrumentation to provide more efficient HTS. We developed a microsphere preparation based on a high-voltage electrostatic (HVE) field and used sodium alginate- and collagen-based hydrogels as scaffolds for 3D cultures of HepG2 cells. The microsphere-generating device enables the rapid and reproducible preparation of bioactive hydrogel microspheres. This 3D culture system exhibited better cell viability, heterogeneity, and drug-metabolizing activity than 2D and other 3D culture models, and the long-term culture characteristics of this system make it suitable for predicting long-term liver toxicity. This system improves the overall applicability of HepG2 spheroids in safety assessment studies, and this simple and controllable high-throughput-compatible method shows potential for use in drug toxicity screening assays and mechanistic studies.


Assuntos
Hidrogéis , Fígado , Humanos , Microesferas , Células Hep G2 , Hidrogéis/farmacologia , Eletricidade Estática
5.
Cell Biol Int ; 47(10): 1760-1764, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37471709

RESUMO

Three-dimensional (3D) culture systems of human cancer cell lines have become popular experimental models for a variety of applications including drug screening. It is understood that the 2D and 3D cultures of the same cell line behave differently in several aspects. One such difference is in the duration of cell culture phases (the lag, log, plateau and the decline stages). We obtained 3D cultures of A549 cells on agarose hydrogels. We observed and compared the morphological differences in the progression of 2D and 3D cultures of A549 cells in a time-dependent manner. The morphological features along with the cell counts and viabilities obtained for the 2D and 3D cultures at different time intervals clearly indicate that the cell culture phases occurred as more extended one for the 3D cultures compared to that of the 2D counterparts. The plateau stage for the 2D and 3D cultures occurred at 48 and 69 h, respectively. Such cell culture phase durations can be different for different cell lines as a function of their doubling times. We propose that the cell culture phase durations for any cell line should be first established before using them for drug testing or for studies involving toxicity to obtain useful results from 3D cell cultures. Also, we propose that the late-exponential (lag) phase of 3D cultures of cancer cell lines is the most ideal one for drug testing owing to the various optimal features of the aggregates in this cell culture phase.


Assuntos
Técnicas de Cultura de Células , Humanos , Células A549 , Linhagem Celular Tumoral , Técnicas de Cultura de Células/métodos
6.
Environ Sci Technol ; 57(49): 20532-20541, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38035630

RESUMO

Indoor dust is a key contributor to the global human exposome in urban areas since the population develops most of its activities in private and public buildings. To gain insight into the health risks associated with this chronic exposure, it is necessary to characterize the chemical composition of dust and understand its biological impacts using reliable physiological models. The present study investigated the biological effects of chemically characterized indoor dust extracts using three-dimensional (3D) lung cancer cell cultures combining phenotypic and lipidomic analyses. Apart from the assessment of cell viability, reactive oxygen species (ROS) induction, and interleukin-8 release, lipidomics was applied to capture the main lipid changes induced as a cellular response to the extracted dust compounds. The application of chemometric tools enabled the finding of associations between chemical compounds present in dust and lipidic and phenotypic profiles in the cells. This study contributes to a better understanding of the toxicity mechanisms associated with exposure to chemical pollutants present in indoor dust.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/induzido quimicamente , Poeira/análise , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Pulmão , Lipídeos , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental/métodos
7.
J Cell Physiol ; 237(12): 4397-4411, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36209478

RESUMO

Three-dimensional (3D) cell cultures represent the spontaneous state of stem cells with specific gene and protein molecular expression that are more alike the in vivo condition. In vitro two-dimensional (2D) cell adhesion cultures are still commonly employed for various cellular studies such as movement, proliferation and differentiation phenomena; this procedure is standardized and amply used in laboratories, however their representing the original tissue has recently been subject to questioning. Cell cultures in 2D require a support/substrate (flasks, multiwells, etc.) and use of fetal bovine serum as an adjuvant that stimulates adhesion that most likely leads to cellular aging. A 3D environment stimulates cells to grow in suspended aggregates that are defined as "spheroids." In particular, adipose stem cells (ASCs) are traditionally observed in adhesion conditions, but a recent and vast literature offers many strategies that obtain 3D cell spheroids. These cells seem to possess a greater ability in maintaining their stemness and differentiate towards all mesenchymal lineages, as demonstrated in in vitro and in vivo studies compared to adhesion cultures. To date, standardized procedures that form ASC spheroids have not yet been established. This systematic review carries out an in-depth analysis of the 76 articles produced over the past 10 years and discusses the similarities and differences in materials, techniques, and purposes to standardize the methods aimed at obtaining ASC spheroids as already described for 2D cultures.


Assuntos
Adipócitos , Artefatos , Esferoides Celulares , Células-Tronco , Adipócitos/citologia , Tecido Adiposo/citologia , Técnicas de Cultura de Células/métodos , Células-Tronco/citologia
8.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36232943

RESUMO

Ex vivo modelling systems for cardiovascular research are becoming increasingly important in reducing lab animal use and boosting personalized medicine approaches. Integrating multiple cell types in complex setups adds a higher level of significance to the models, simulating the intricate intercellular communication of the microenvironment in vivo. Cardiac fibrosis represents a key pathogenetic step in multiple cardiovascular diseases, such as ischemic and diabetic cardiomyopathies. Indeed, allowing inter-cellular interactions between cardiac stromal cells, endothelial cells, cardiomyocytes, and/or immune cells in dedicated systems could make ex vivo models of cardiac fibrosis even more relevant. Moreover, culture systems with 3D architectures further enrich the physiological significance of such in vitro models. In this review, we provide a summary of the multicellular 3D models for the study of cardiac fibrosis described in the literature, such as spontaneous microtissues, bioprinted constructs, engineered tissues, and organs-on-chip, discussing their advantages and limitations. Important discoveries on the physiopathology of cardiac fibrosis, as well as the screening of novel potential therapeutic molecules, have been reported thanks to these systems. Future developments will certainly increase their translational impact for understanding and modulating mechanisms of cardiac fibrosis even further.


Assuntos
Células Endoteliais , Engenharia Tecidual , Animais , Comunicação Celular , Fibrose , Miócitos Cardíacos/metabolismo
9.
Int J Mol Sci ; 23(17)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36077471

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing the coronavirus disease 2019 (COVID-19), has provoked more than six million deaths worldwide and continues to pose a major threat to global health. Enormous efforts have been made by researchers around the world to elucidate COVID-19 pathophysiology, design efficacious therapy and develop new vaccines to control the pandemic. To this end, experimental models are essential. While animal models and conventional cell cultures have been widely utilized during these research endeavors, they often do not adequately reflect the human responses to SARS-CoV-2 infection. Therefore, models that emulate with high fidelity the SARS-CoV-2 infection in human organs are needed for discovering new antiviral drugs and vaccines against COVID-19. Three-dimensional (3D) cell cultures, such as lung organoids and bioengineered organs-on-chips, are emerging as crucial tools for research on respiratory diseases. The lung airway, small airway and alveolus organ chips have been successfully used for studies on lung response to infection by various pathogens, including corona and influenza A viruses. In this review, we provide an overview of these new tools and their use in studies on COVID-19 pathogenesis and drug testing. We also discuss the limitations of the existing models and indicate some improvements for their use in research against COVID-19 as well as future emerging epidemics.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Animais , Vacinas contra COVID-19 , Humanos , Pulmão , Pandemias/prevenção & controle
10.
Artigo em Inglês, Russo | MEDLINE | ID: mdl-36534628

RESUMO

Tumor cell lines and cultures are widely used in biomedical research. They are excellent model systems for analysis of oncological mechanisms and understanding the biology of tumor cells. Cell cultures are used to develop and test new anticancer drugs, radiosensitizers and radiotherapy methods. Clinical application of tumor cell cultures is directly related to development of personalized medicine. Using tumor cell culture in a particular patient, physicians can select treatment considering molecular genetic characteristics of patient and tumor. In addition, it is possible to choose the optimal drug or radiotherapy regimen with obvious effectiveness in certain cell culture. This review describes the advantages of such an approach.


Assuntos
Técnicas de Cultura de Células , Neoplasias do Sistema Nervoso Central , Humanos , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral
11.
Cancer Immunol Immunother ; 70(3): 843-856, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33492447

RESUMO

Immune checkpoint inhibitors (ICIs) that target programmed cell death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1) have shown modest activity as monotherapies for the treatment of ovarian cancer (OC). The rationale for using these therapies in combination with poly (ADP-ribose) polymerase inhibitors (PARP-Is) has been described, and their in vivo application will benefit from ex vivo platforms that aid in the prediction of patient response or resistance to therapy. This study examined the effectiveness of detecting patient-specific immune-related activity in OC using three-dimensional (3D) spheroids. Immune-related cell composition and PD-1/PD-L1 expression status were evaluated using cells dissociated from fresh OC tissue from two patients prior to and following 3D culture. The patient sample with the greatest increase in the proportion of PD-L1 + cells also possessed more activated cytotoxic T cells and mature DCs compared to the other patient sample. Upon cytokine stimulation, patient samples demonstrated increases in cytotoxic T cell activation and DC major histocompatibility complex (MHC) class-II expression. Pembrolizumab increased cytokine secretion, enhanced olaparib cytotoxicity, and reduced spheroid viability in a T cell-dependent manner. Furthermore, durvalumab and olaparib combination treatment increased cell death in a synergistic manner. This work demonstrates that immune cell activity and functional modulation can be accurately detected using our ex vivo 3D spheroid platform, and it presents evidence for their utility to demonstrate sensitivity to ICIs alone or in combination with PARP-Is in a preclinical setting.


Assuntos
Antineoplásicos/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Inibidores de Checkpoint Imunológico/farmacologia , Ftalazinas/farmacologia , Piperazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Linhagem Celular Tumoral , Células Cultivadas , Citocinas/metabolismo , Sinergismo Farmacológico , Humanos , Imunofenotipagem , Esferoides Celulares , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo
12.
Mol Reprod Dev ; 88(4): 287-301, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33734523

RESUMO

Hanging drop (HD) three-dimensional (3D) culture model for buffalo granulosa cells (GC) was reported to mimic the preovulatory stage of ovarian follicles in our previous study. To further verify its reliability, the present study attempted a comparative transcriptome profile of buffalo GC freshly isolated from ovarian follicles (<8 mm diameter) (FC) and their cultures in normal culture dish (ND or 2D), polyHEMA coated dish (PH) and HD culture systems (3D). Out of 223 significantly (-log2 fold change: >3; p < .0005; false discovery rate [FDR]: <0.1) differentially expressed genes (SDEGs) among different culture systems, 137 were found unannotated, and 94, 29, and 66 were exclusively expressed in FC, PH, and HD, respectively. However, on eliminating the fixed points of p values and FDR from the entire raw data, only 11 genes related to long noncoding RNA, 12 genes related to luteinization, and 3 genes related to follicular maturation were exclusively expressed in FC, PH, and HD culture systems, respectively. The quantitative real time-PCR validation and the next generation sequencing data had more than 90% correlation. Bioinformatics analyses of the exclusively expressed SDEG revealed that the freshly aspirated GCs were a true representative of GCs from small follicles (<8 mm diameter), the GC spheroids under PH maintained mitochondrial function, and those cultured in HD system for 6 days simulated the inflammatory milieu required for ovulation. Therefore, the comparative transcriptome profile also reinforced that HD culture system is better in vitro culture method than the other methods analyzed in this study for buffalo GC.


Assuntos
Búfalos/genética , Técnicas de Cultura de Células/métodos , Células da Granulosa/metabolismo , RNA-Seq/métodos , Transcriptoma/genética , Animais , Búfalos/metabolismo , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Luteinização/genética , Mapas de Interação de Proteínas/genética , RNA Longo não Codificante/genética , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/isolamento & purificação , RNA Ribossômico 28S/genética , RNA Ribossômico 28S/isolamento & purificação , Reprodutibilidade dos Testes
13.
Cell Microbiol ; 22(8): e13207, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32270902

RESUMO

To disseminate and colonise tissues in the mammalian host, Trypanosoma cruzi trypomastogotes should cross several biological barriers. How this process occurs or its impact in the outcome of the disease is largely speculative. We examined the in vitro transmigration of trypomastigotes through three-dimensional cultures (spheroids) to understand the tissular dissemination of different T. cruzi strains. Virulent strains were highly invasive: trypomastigotes deeply transmigrate up to 50 µm inside spheroids and were evenly distributed at the spheroid surface. Parasites inside spheroids were systematically observed in the space between cells suggesting a paracellular route of transmigration. On the contrary, poorly virulent strains presented a weak migratory capacity and remained in the external layers of spheroids with a patch-like distribution pattern. The invasiveness-understood as the ability to transmigrate deep into spheroids-was not a transferable feature between strains, neither by soluble or secreted factors nor by co-cultivation of trypomastigotes from invasive and non-invasive strains. Besides, we demonstrated that T. cruzi isolates from children that were born congenitally infected presented a highly migrant phenotype while an isolate from an infected mother (that never transmitted the infection to any of her children) presented significantly less migration. In brief, we demonstrated that in a 3D microenvironment each strain presents a characteristic migration pattern that can be associated to their in vivo behaviour. Altogether, data presented here repositionate spheroids as a valuable tool to study host-pathogen interactions.


Assuntos
Técnicas de Cultura de Células/métodos , Interações Hospedeiro-Patógeno , Esferoides Celulares/parasitologia , Trypanosoma cruzi/patogenicidade , Animais , Doença de Chagas/parasitologia , Criança , Chlorocebus aethiops , Citometria de Fluxo , Células HEK293 , Células HeLa , Humanos , Movimento , Esferoides Celulares/citologia , Trypanosoma cruzi/fisiologia , Células Vero
14.
Bioessays ; 41(8): e1900011, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31274205

RESUMO

Recent developments in 3D cultures exploiting the self-organization ability of pluripotent stem cells have enabled the generation of powerful in vitro systems termed brain organoids. These 3D tissues recapitulate many aspects of human brain development and disorders occurring in vivo. When combined with improved differentiation methods, these in vitro systems allow the generation of more complex "assembloids," which are able to reveal cell diversities, microcircuits, and cell-cell interactions within their 3D organization. Here, the ways in which human brain organoids have contributed to demystifying the complexities of brain development and modeling of developmental disorders is reviewed and discussed. Furthermore, challenging questions that are yet to be addressed by emerging brain organoid research are discussed.


Assuntos
Encéfalo/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Neurais/citologia , Organoides , Animais , Encéfalo/crescimento & desenvolvimento , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/fisiopatologia , Técnicas de Cultura de Células , Descoberta de Drogas/métodos , Humanos , Microcefalia/fisiopatologia , Modelos Neurológicos , Transtornos do Neurodesenvolvimento/fisiopatologia
15.
Drug Resist Updat ; 48: 100658, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31678863

RESUMO

The complexity of cancer biology and its clinical manifestation are driven by genetic, epigenetic, transcriptomic, proteomic and metabolomic alterations, supported by genomic instability as well as by environmental conditions and lifestyle factors. Although novel therapeutic modalities are being introduced, efficacious cancer therapy is not achieved due to the frequent emergence of distinct mechanisms of multidrug resistance (MDR). Advanced technologies with the potential to identify and characterize cancer MDR could aid in selecting the most efficacious therapeutic regimens and prevent inappropriate treatments of cancer patients. Herein, we aim to present technological tools that will enhance our ability to surmount drug resistance in cancer in the upcoming decade. Some of these tools are already in practice such as next-generation sequencing. Identification of genes and different types of RNAs contributing to the MDR phenotype, as well as their molecular targets, are of paramount importance for the development of new therapeutic strategies aimed to enhance drug response in resistant tumors. Other techniques known for many decades are in the process of adaptation and improvement to study cancer cells' characteristics and biological behavior including atomic force microscopy (AFM) and live-cell imaging. AFM can monitor in real-time single molecules or molecular complexes as well as structural alterations occurring in cancer cells induced upon treatment with various antitumor agents. Cell tracking methodologies and software tools recently progressed towards quantitative analysis of the spatio-temporal dynamics of heterogeneous cancer cell populations and enabled direct monitoring of cells and their descendants in 3D cultures. Besides, novel 3D systems with the advanced mimicking of the in vivo tumor microenvironment are applicable to study different cancer biology phenotypes, particularly drug-resistant and aggressive ones. They are also suitable for investigating new anticancer treatment modalities. The ultimate goal of using phenotype-driven 3D cultures for the investigation of patient biopsies as the most appropriate in vivo mimicking model, can be achieved in the near future.


Assuntos
Biotecnologia/métodos , Resistência a Múltiplos Medicamentos/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias/genética , Animais , Técnicas de Cultura de Células/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Microscopia de Força Atômica/métodos , Neoplasias/patologia , Microambiente Tumoral/genética
16.
Int J Mol Sci ; 22(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34884877

RESUMO

Doxorubicin (Dox) is one of the most widely used treatments for breast cancer, although limited by the well-documented cardiotoxicity and other off-target effects. Mesenchymal stem cell (MSC) secretome has shown immunomodulatory and regenerative properties, further potentiated under 3D conditions. This work aimed to uncover the effect of the MSC-derived secretome from 3D (CM3D) or 2D (CM2D) cultures, in human malignant breast cells (MDA-MB-231), non-tumor breast epithelial cells (MCF10A) and differentiated AC16 cardiomyocytes, co-treated with Dox. A comprehensive proteomic analysis of CM3D/CM2D was also performed to unravel the underlying mechanism. CM3D/CM2D co-incubation with Dox revealed no significant differences in MDA-MB-231 viability when compared to Dox alone, whereas MCF10A and AC16 viability was consistently improved in Dox+CM3D-treated cells. Moreover, neither CM2D nor CM3D affected Dox anti-migratory and anti-invasive effects in MDA-MB-231. Notably, Ge-LC-MS/MS proteomic analysis revealed that CM3D displayed protective features that might be linked to the regulation of cell proliferation (CAPN1, CST1, LAMC2, RANBP3), migration (CCN3, MMP8, PDCD5), invasion (TIMP1/2), oxidative stress (COX6B1, AIFM1, CD9, GSR) and inflammation (CCN3, ANXA5, CDH13, GDF15). Overall, CM3D decreased Dox-induced cytotoxicity in non-tumor cells, without compromising Dox chemotherapeutic profile in malignant cells, suggesting its potential use as a chemotherapy adjuvant to reduce off-target side effects.


Assuntos
Neoplasias da Mama/terapia , Doxorrubicina/farmacologia , Imunomodulação , Células-Tronco Mesenquimais/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Secretoma , Neoplasias da Mama/tratamento farmacológico , Cardiotoxicidade/prevenção & controle , Linhagem Celular , Linhagem Celular Tumoral , Terapia Combinada , Doxorrubicina/uso terapêutico , Feminino , Humanos , Estresse Oxidativo
17.
Int J Mol Sci ; 22(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065977

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is the most frequent and aggressive primary brain tumor, and macrophages account for 30-40% of its composition. Most of these macrophages derive from bone marrow monocytes playing a crucial role in tumor progression. Unraveling the mechanisms of macrophages-GBM crosstalk in an appropriate model will contribute to the development of specific and more successful therapies. We investigated the interaction of U87MG human GBM cells with primary human CD14+ monocytes or the THP-1 cell line with the aim of establishing a physiologically relevant heterotypic culture model. METHODS: primary monocytes and THP-1 cells were cultured in the presence of U87MG conditioned media or co-cultured together with previously formed GBM spheroids. Monocyte differentiation was determined by flow cytometry. RESULTS: primary monocytes differentiate to M2 macrophages when incubated with U87MG conditioned media in 2-dimensional culture, as determined by the increased percentage of CD14+CD206+ and CD64+CD206+ populations in CD11b+ cells. Moreover, the mitochondrial protein p32/gC1qR is expressed in monocytes exposed to U87MG conditioned media. When primary CD14+ monocytes or THP-1 cells are added to previously formed GBM spheroids, both invade and establish within them. However, only primary monocytes differentiate and acquire a clear M2 phenotype characterized by the upregulation of CD206, CD163, and MERTK surface markers on the CD11b+CD14+ population and induce alterations in the sphericity of the cell cultures. CONCLUSION: our results present a new physiologically relevant model to study GBM/macrophage interactions in a human setting and suggest that both soluble GBM factors, as well as cell-contact dependent signals, are strong inducers of anti-inflammatory macrophages within the tumor niche.


Assuntos
Neoplasias Encefálicas/metabolismo , Técnicas de Cocultura/métodos , Glioblastoma/metabolismo , Macrófagos/citologia , Monócitos/citologia , Biomarcadores/metabolismo , Proteínas de Transporte/metabolismo , Comunicação Celular , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Meios de Cultivo Condicionados/química , Meios de Cultivo Condicionados/farmacologia , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Proteínas Mitocondriais/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Cultura Primária de Células , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Células THP-1
18.
Molecules ; 26(20)2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34684841

RESUMO

The culture of 3D spheroids is a promising tool in drug development and testing. Recently, we synthesized a new group of compounds, unsymmetrical bisacridines (UAs), which exhibit high cytotoxicity against various human cell lines and antitumor potency against several xenografts. Here, we describe the ability of four UAs-C-2028, C-2041, C-2045, and C-2053-to influence the growth of HCT116 and H460 spheres and the viability of HCT116 cells in 3D culture compared with that in 2D standard monolayer culture. Spheroids were generated using ultra-low-attachment plates. The morphology and diameters of the obtained spheroids and those treated with UAs were observed and measured under the microscope. The viability of cells exposed to UAs at different concentrations and for different incubation times in 2D and 3D cultures was assessed using 7-AAD staining. All UAs managed to significantly inhibit the growth of HCT116 and H460 spheroids. C-2045 and C-2053 caused the death of the largest population of HCT116 spheroid cells. Although C-2041 seemed to be the most effective in the 2D monolayer experiments, in 3D conditions, it turned out to be the weakest compound. The 3D spheroid culture seems to be a suitable method to examine the efficiency of new antitumor compounds, such as unsymmetrical bisacridines.


Assuntos
Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Esferoides Celulares/efeitos dos fármacos , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Células HCT116 , Humanos
19.
Cancer Metastasis Rev ; 38(3): 445-454, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31605250

RESUMO

Cells grown in three dimensions (3D) within natural extracellular matrices or synthetic scaffolds more closely recapitulate the phenotype of those cells within tissues in regard to normal developmental and pathobiological processes. This includes degradation of the surrounding stroma as the cells migrate and invade through the matrices. As 3D cultures of tumor cells predict efficacy of, and resistance to, a wide variety of cancer therapies, we employed tissue-engineering approaches to establish 3D pathomimetic avatars of human breast cancer cells alone and in the context of both their cellular and pathochemical microenvironments. We have shown that we can localize and quantify key parameters of malignant progression by live-cell imaging of the 3D avatars over time (4D). One surrogate for changes in malignant progression is matrix degradation, which can be localized and quantified by our live-cell proteolysis assay. This assay is predictive of changes in spatio-temporal and dynamic interactions among the co-cultured cells and changes in viability, proliferation, and malignant phenotype. Furthermore, our live-cell proteolysis assay measures the effect of small-molecule inhibitors of proteases and kinases, neutralizing or blocking antibodies to cytokines and photodynamic therapy on malignant progression. We suggest that 3D/4D pathomimetic avatars in combination with our live-cell proteolysis assays will be a useful preclinical screening platform for cancer therapies. Our ultimate goal is to develop 3D/4D avatars from an individual patient's cancer in which we can screen "personalized medicine" therapies using changes in proteolytic activity to quantify therapeutic efficacy.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patologia , Carcinoma Intraductal não Infiltrante/metabolismo , Carcinoma Intraductal não Infiltrante/patologia , Animais , Neoplasias da Mama/diagnóstico por imagem , Carcinoma Ductal de Mama/diagnóstico por imagem , Carcinoma Intraductal não Infiltrante/diagnóstico por imagem , Técnicas de Cultura de Células/métodos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Humanos , Microscopia Confocal , Imagem Óptica/métodos , Proteólise , Microambiente Tumoral
20.
Int J Med Sci ; 17(12): 1795-1802, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714082

RESUMO

Background/Aim: Pancreatic adenocarcinoma is a highly malignant tumor. Synergistic combinations of anticancer agents for the effective treatment of pancreatic cancer patients are urgently needed. Here, we investigated the combined effect of celecoxib (CEL) and salirasib (SAL) on pancreatic cancer cells. Methods: Cell viability and apoptosis were measured by the trypan blue assay, three-dimensional cultures, propidium iodide staining, and caspase-3 assay. NF-κB activation and the protein levels of Akt, pAkt, and Bcl-2 were determined by the luciferase reporter assay and western blot. Results: Co-treatment with CEL and SAL had stronger effects on decreasing cell viability and inducing apoptosis in Panc-1 cells as compared with each agent individually. This combination strongly inhibited NF-κB activity and reduced pAkt and Bcl-2 levels in Panc-1 cells. Conclusion: SAL in combination with CEL may represent a new approach for effective inhibition of pancreatic cancer.


Assuntos
Celecoxib/farmacologia , Farneseno Álcool/análogos & derivados , Neoplasias Pancreáticas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Salicilatos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Farneseno Álcool/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , NF-kappa B/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA