Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Biochem Biophys Res Commun ; 673: 131-136, 2023 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-37385007

RESUMO

Aromatic l-amino acid decarboxylase (AADC) deficiency is a rare autosomal recessive neurometabolic disorder caused by biallelic pathogenic variants in the DDC gene and mainly characterized by developmental delay, hypotonia, and oculogyric crises. Early diagnosis is crucial for correct patient management; however, many patients remain misdiagnosed or undiagnosed due to the rarity and clinical heterogeneity of the disorder especially in the milder forms. Here, we applied exome sequencing approach by screening 2000 paediatric patients with neurodevelopmental disorders to identify possible new AADC variants and AADC deficiency patients. We identified five distinct DDC variants in two unrelated individuals. Patient #1 harboured two compound heterozygous DDC variants: c.436-12T > C and c.435 + 24A>C and presented with psychomotor delay, tonic spasms, and hyperreactivity. Patient #2 had three homozygous AADC variants: c.1385G > A; p.Arg462Gln, c.234C > T; p.Ala78 = , and c.201 + 37A > G and presented with developmental delay and myoclonic seizures. The variants were classified as benign class I variants and therefore non-causative according to the ACMG/AMP guidelines. Since the AADC protein is a structural and functional obligate homodimer, we evaluated the possible AADC polypeptide chain combinations in the two patients and determined the effects resulting from the amino acid substitution Arg462Gln. Our patients carrying DDC variants presented clinical manifestations not precisely overlapped to the classical symptoms exhibited by the most severe AADC deficiency cases. However, screening data derived from exome sequencing in patients featuring wide-range symptoms related to neurodevelopmental disorders may help to identify AADC deficiency patients, especially when applied to larger cohorts.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Transtornos do Neurodesenvolvimento , Humanos , Criança , Sequenciamento do Exoma , Descarboxilases de Aminoácido-L-Aromático/genética , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/genética , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Aminoácidos/genética
2.
J Inherit Metab Dis ; 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402126

RESUMO

The autosomal recessive defect of aromatic L-amino acid decarboxylase (AADC) leads to a severe neurological disorder with manifestation in infancy due to a pronounced, combined deficiency of dopamine, serotonin and catecholamines. The success of conventional drug treatment is very limited, especially in patients with a severe phenotype. The development of an intracerebral AAV2-based gene delivery targeting the putamen or substantia nigra started more than 10 years ago. Recently, the putaminally-delivered construct, Eladocagene exuparvovec has been approved by the European Medicines Agency and by the British Medicines and Healthcare products Regulatory Agency. This now available gene therapy provides for the first time also for AADC deficiency (AADCD) a causal therapy, leading this disorder into a new therapeutic era. By using a standardized Delphi approach members of the International Working Group on Neurotransmitter related Disorders (iNTD) developed structural requirements and recommendations for the preparation, management and follow-up of AADC deficiency patients who undergo gene therapy. This statement underlines the necessity of a framework for a quality-assured application of AADCD gene therapy including Eladocagene exuparvovec. Treatment requires prehospital, inpatient and posthospital care by a multidisciplinary team in a specialized and qualified therapy center. Due to lack of data on long-term outcomes and the comparative efficacy of alternative stereotactic procedures and brain target sites, a structured follow-up plan and systematic documentation of outcomes in a suitable, industry-independent registry study are necessary.

3.
Hum Mutat ; 39(12): 2072-2082, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30260058

RESUMO

Aromatic l-amino acid decarboxylase deficiency (AADCD), attributed to mutations in the dopa decarboxylase (DDC) gene, is a rare neurometabolic disease resulting from a defect in the biosynthesis of dopamine and serotonin. The DDC c.714+4A>T mutation is the most prevalent mutation among patients with AADCD, and is also a founder mutation among Taiwanese patients. In this study, the molecular consequences and function of this mutation were examined in AADCD patient-derived lymphoblastoid cells. We identified novel DDC mRNA isoforms spliced with a new exon (exon 6a) in normal and c.714+4A>T lymphoblastoid cells. In addition, we identified the SR proteins (SRSF9 and SRSF6), as well as cis-elements involved in modulating the splicing of this mutated transcript. Notably, we demonstrated that antisense oligonucleotides (ASOs) were able to restore the normal mRNA splicing and increase the level of DDC protein, as well as its downstream product serotonin, in lymphoblastoid cells derived from the patient with AADCD, suggesting that these ASOs might represent a feasible alternative strategy for gene therapy of AADCD in patients with the common c.714+4A>T mutation.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/enzimologia , Descarboxilases de Aminoácido-L-Aromático/deficiência , Oligonucleotídeos Antissenso/farmacologia , Fosfoproteínas/metabolismo , Fatores de Processamento de Serina-Arginina/metabolismo , Processamento Alternativo/efeitos dos fármacos , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Descarboxilases de Aminoácido-L-Aromático/genética , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Efeito Fundador , Humanos , Polimorfismo de Nucleotídeo Único , Serotonina/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo , Taiwan
4.
Genes (Basel) ; 15(1)2024 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-38275615

RESUMO

Aromatic L-amino acid decarboxylase deficiency (AADCd) is a rare autosomal recessive neurometabolic disorder caused by AADC deficiency, an enzyme encoded by the DDC gene. Since the enzyme is involved in the biosynthesis of serotonin and dopamine, its deficiency determines the lack of these neurotransmitters, but also of norepinephrine and epinephrine. Onset is early and the key signs are hypotonia, movement disorders (oculogyric crises, dystonia and hypokinesia), developmental delay and autonomic dysfunction. Taiwan is the site of a potential founder variant (IVS6+4A>T) with a predicted incidence of 1/32,000 births, while only 261 patients with this deficit have been described worldwide. Actually, the number of affected persons could be greater, given that the spectrum of clinical manifestations is broad and still little known. In our study we selected 350 unrelated patients presenting with different neurological disorders including heterogeneous neuromuscular disorders, cognitive deficit, behavioral disorders and autism spectrum disorder, for which the underlying etiology had not yet been identified. Molecular investigation of the DDC gene was carried out with the aim of identifying affected patients and/or carriers. Our study shows a high frequency of carriers (2.57%) in Sicilian subjects with neurological deficits, with a higher concentration in northern and eastern Sicily. Assuming these data as representative of the general Sicilian population, the risk may be comparable to some rare diseases included in the newborn screening programs such as spinal muscular atrophy, cystic fibrosis and phenylketonuria.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Transtorno do Espectro Autista , Doenças do Sistema Nervoso , Recém-Nascido , Humanos , Transtorno do Espectro Autista/genética , Descarboxilases de Aminoácido-L-Aromático/genética , Doenças do Sistema Nervoso/genética , Testes Genéticos
5.
Curr Med Res Opin ; 38(11): 1871-1882, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35485958

RESUMO

OBJECTIVE: The objective was to investigate the severity of aromatic L-amino acid decarboxylase deficiency (AADCd) as reported in the published literature and to collate evidence of the clinical manifestations of AADCd, and the impact of the disease on patients, caregivers, and healthcare systems. METHODS: Published articles reporting severity of disease or disease impact were eligible for inclusion in this review. Articles were searched in MEDLINE, EMBASE, Cochrane CENTRAL, TRIP medical, and CRD databases in October 2021. The quality of the included studies was investigated using a modified version of the grading system of the Centre for Evidence-Based Medicine (CEBM). Descriptive data of the literature was extracted and a narrative synthesis of the results across studies was conducted. This review is reported according to the PRISMA reporting guidelines for systematic reviews. RESULTS: The search identified 970 unique reports, of which 59 met eligibility criteria to be included in the review. Of these, 48 included reports provided details on the clinical manifestations of AADCd. Two reports explored the disease impact on patients, while four described the impact on caregivers. Five reports assessed the impact on healthcare systems. Individuals with AADCd experience very severe clinical manifestations regardless of motor milestones achieved, and present with a spectrum of other complications. Individuals with AADCd present with very limited function, which, in combination with additional complications, substantially impact the quality-of-life of individuals and their caregivers. The five studies which explore the impact on the healthcare system reported that adequate care of individuals with AADCd requires a vast array of medical services and supportive therapies. CONCLUSIONS: Irrespective of the ambulatory status of individuals, AADCd is a debilitating disease that significantly impacts quality-of-life for individuals and caregivers. It impacts the healthcare system due to the need for complex coordinated activities of a multidisciplinary specialist team.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Descarboxilases de Aminoácido-L-Aromático , Humanos , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Cuidadores , Índice de Gravidade de Doença
6.
Front Neurol ; 13: 919583, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119679

RESUMO

Background: Aromatic amino acid decarboxylase (AADC) deficiency is a rare, autosomal recessive neurometabolic disorder with heterogeneous phenotype, including hypotonia, movement disorders, autonomic dysfunction, and developmental delay. Here, we reported a Chinese patient with AADCD who was initially misdiagnosed with epilepsy. Case presentation: The proband was a 4-month-old Chinese girl, representing hypotonia, episodes of oculogyric crises with dystonia, and delayed developmental milestones. The patient was first misdiagnosed with epilepsy because of the similarity between episodes of oculogyric crisis and epileptic seizure. The accurate diagnosis of AADCD was established through analysis of neurotransmitters in cerebrospinal fluid (CSF). The genetic test confirmed the patient carried novel compound heterozygous mutations in the DDC gene:c.419G>A and c.1375C>T. Conclusion: This study reported a patient with AADCD who was initially misdiagnosed as epilepsy. Two novel missense mutations in the DDC gene were identified from the patient and her family. Little infants with epileptic-like attacks should consider AADCD. An accurate diagnosis of AADCD is essential for drug choice and patient management.

7.
Mol Genet Metab Rep ; 32: 100888, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35769135

RESUMO

Aromatic l-amino acid decarboxylase (AADC, EC 4.1.1.28) deficiency is a rare genetic disorder characterized by developmental delay, oculogyric crises, autonomic dysfunction and other problems, caused by biallelic mutations in the DDC gene leading to deficient activity of aromatic l-amino acid decarboxylase, an enzyme involved in the formation of important neurotransmitters, such as dopamine and serotonin. A clinical development program of gene therapy for AADC deficiency is ongoing. An important step for the success of this therapy is the early and precise identification of the affected individuals, but it has been estimated that around 90% of the cases remain undiagnosed. The availability measurement of the AADC activity is mandatory for an accurate biochemical diagnosis. Based on these statements, our objectives were to develop a liquid chromatography tandem mass spectrometry (LC-MS/MS) method suitable for the determination of the AADC activity, and to evaluate its capacity to confirm the deficiency of AADC in potential patients in Brazil. The AADC activities were measured in plasma samples of seven AADC deficient patients and 35 healthy controls, after enzymatic reaction and LC-MS/MS analysis of dopamine, the main reaction product. The results obtained showed clear discrimination between confirmed AADC deficient patients and healthy controls. The method presented here could be incorporated in the IEM laboratories for confirmation of the diagnosis of when a suspicion of AADC deficiency is present due to clinical signs and/or abnormal biomarkers, including when an increased level of 3-O-methyldopa (3-OMD) is found in dried blood spots (DBS) samples from high-risk patients or from newborn screening programs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA