Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Genes Chromosomes Cancer ; 63(4): e23232, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38607246

RESUMO

The wide application of RNA sequencing in clinical practice has allowed the discovery of novel fusion genes, which have contributed to a refined molecular classification of rhabdomyosarcoma (RMS). Most fusions in RMS result in aberrant transcription factors, such as PAX3/7::FOXO1 in alveolar RMS (ARMS) and fusions involving VGLL2 or NCOA2 in infantile spindle cell RMS. However, recurrent fusions driving oncogenic kinase activation have not been reported in RMS. Triggered by an index case of an unclassified RMS (overlapping features between ARMS and sclerosing RMS) with a novel FGFR1::ANK1 fusion, we reviewed our molecular files for cases harboring FGFR1-related fusions. One additional case with an FGFR1::TACC1 fusion was identified in a tumor resembling embryonal RMS (ERMS) with anaplasia, but with no pathogenic variants in TP53 or DICER1 on germline testing. Both cases occurred in males, aged 7 and 24, and in the pelvis. The 2nd case also harbored additional alterations, including somatic TP53 and TET2 mutations. Two additional RMS cases (one unclassified, one ERMS) with FGFR1 overexpression but lacking FGFR1 fusions were identified by RNA sequencing. These two cases and the FGFR1::TACC1-positive case clustered together with the ERMS group by RNAseq. This is the first report of RMS harboring recurrent FGFR1 fusions. However, it remains unclear if FGFR1 fusions define a novel subset of RMS or alternatively, whether this alteration can sporadically drive the pathogenesis of known RMS subtypes, such as ERMS. Additional larger series with integrated genomic and epigenetic datasets are needed for better subclassification, as the resulting oncogenic kinase activation underscores the potential for targeted therapy.


Assuntos
Rabdomiossarcoma Alveolar , Rabdomiossarcoma Embrionário , Rabdomiossarcoma , Masculino , Humanos , Adulto , Criança , Rabdomiossarcoma/genética , Rabdomiossarcoma Embrionário/genética , Epigenômica , Genômica , Ribonuclease III , RNA Helicases DEAD-box , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética
2.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(2): 207-219, 2024 Feb 28.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-38755717

RESUMO

OBJECTIVES: Abnormal immune system activation and inflammation are crucial in causing Parkinson's disease. However, we still don't fully understand how certain immune-related genes contribute to the disease's development and progression. This study aims to screen key immune-related gene in Parkinson's disease based on weighted gene co-expression network analysis (WGCNA) and machine learning. METHODS: This study downloaded the gene chip data from the Gene Expression Omnibus (GEO) database, and used WGCNA to screen out important gene modules related to Parkinson's disease. Genes from important modules were exported and a Venn diagram of important Parkinson's disease-related genes and immune-related genes was drawn to screen out immune related genes of Parkinson's disease. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to analyze the the functions of immune-related genes and signaling pathways involved. Immune cell infiltration analysis was performed using the CIBERSORT package of R language. Using bioinformatics method and 3 machine learning methods [least absolute shrinkage and selection operator (LASSO) regression, random forest (RF), and support vector machine (SVM)], the immune-related genes of Parkinson's disease were further screened. A Venn diagram of differentially expressed genes screened using the 4 methods was drawn with the intersection gene being hub nodes (hub) gene. The downstream proteins of the Parkinson's disease hub gene was identified through the STRING database and a protein-protein interaction network diagram was drawn. RESULTS: A total of 218 immune genes related to Parkinson's disease were identified, including 45 upregulated genes and 50 downregulated genes. Enrichment analysis showed that the 218 genes were mainly enriched in immune system response to foreign substances and viral infection pathways. The results of immune infiltration analysis showed that the infiltration percentages of CD4+ T cells, NK cells, CD8+ T cells, and B cells were higher in the samples of Parkinson's disease patients, while resting NK cells and resting CD4+ T cells were significantly infiltrated in the samples of Parkinson's disease patients. ANK1 was screened out as the hub gene. The analysis of the protein-protein interaction network showed that the ANK1 translated and expressed 11 proteins which mainly participated in functions such as signal transduction, iron homeostasis regulation, and immune system activation. CONCLUSIONS: This study identifies the Parkinson's disease immune-related key gene ANK1 via WGCNA and machine learning methods, suggesting its potential as a candidate therapeutic target for Parkinson's disease.


Assuntos
Redes Reguladoras de Genes , Aprendizado de Máquina , Doença de Parkinson , Doença de Parkinson/genética , Doença de Parkinson/imunologia , Humanos , Perfilação da Expressão Gênica , Biologia Computacional/métodos , Ontologia Genética , Bases de Dados Genéticas , Transdução de Sinais/genética , Análise de Sequência com Séries de Oligonucleotídeos
3.
Orphanet J Rare Dis ; 19(1): 278, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39044243

RESUMO

OBJECTIVE: This study aimed to investigate the clinical features, pathogenic gene variants, and potential genotype-phenotype correlations in Chinese patients with hereditary spherocytosis (HS). METHODS: Retrospective analysis of clinical data and molecular genetic characteristics was conducted on patients diagnosed with HS at Jiangxi Provincial Children's Hospital, the Second Affiliated Hospital of Nanchang University, Pingxiang People's Hospital and The Third People's Hospital of Jingdezhen between November 2017 and June 2023. Statistical analyses were performed to compare and analyze the red blood cell (RBC), hemoglobin (HB), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC) data between and within groups based on different mutations and age groups (< 14 and ≥ 14 years). RESULTS: A total of 34 HS patients were included in this study, comprising 22 children (64.70%) and 12 adults (35.30%). The probands who underwent genetic testing were derived from 34 unrelated families. Thirty-two variants were tested and 9 of them are novel. Eighteen cases had ANK1 variants, 15 had SPTB variants, and 1 had SLC4A1 variant. 25 patients performed core family members underwent genetic testing, 17 (68.0%, 17/25) were de novo, 5 (20.0%, 5/25) were maternally inherited, and 3 (12.0%, 3/25) were paternally inherited. ANK1-HS patients exhibited more severe anemia compared to cases with SPTB-HS, showing lower levels of RBC and HB (P < 0.05). Anemia was more severe in patients diagnosed in childhood than in those diagnosed in adulthood. Within the ANK1-HS group, MCH levels in adult patients was significantly higher than those in children (P < 0.05), while there were no significant differences in RBC, HB, MCV, and MCHC levels between two groups. Adult patients with SPTB-HS had significantly higher levels of RBC, HB, and MCH than pediatric patients (P < 0.05), while MCV and MCHC levels showed no significant statistical differences. CONCLUSION: This study conducted a comparative analysis of phenotypic characteristics and molecular genetics in adult and pediatric patients diagnosed with HS, confirming that pediatric ANK1-HS patients exhibit a more severe anemic phenotype compared to SPTB-HS patients, while the severity of HS in adults does not significantly differ between different causative genes.


Assuntos
Anquirinas , Esferocitose Hereditária , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Adulto Jovem , Proteína 1 de Troca de Ânion do Eritrócito/genética , Anquirinas/genética , População do Leste Asiático/genética , Índices de Eritrócitos , Mutação , Estudos Retrospectivos , Espectrina/genética , Esferocitose Hereditária/genética
4.
Front Genet ; 15: 1390924, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655052

RESUMO

Objective: The objective of this study was to pinpoint pathogenic genes and assess the mutagenic pathogenicity in two pediatric patients with hereditary spherocytosis. Methods: We utilized whole-exome sequencing (WES) for individual analysis (case 1) and family-based trio analysis (case 2). The significance of the intronic mutation was validated through a Minigene splicing assay and supported by subsequent in vitro experiments. Results: Both probands received a diagnosis of hereditary spherocytosis. WES identified a novel ANK1 c.1504-9G>A mutation in both patients, causing the retention of seven nucleotides at the 5' end of intron 13, as substantiated by the Minigene assay. This variant results in a premature stop codon and the production of a truncated protein. In vitro studies indicated a reduced expression of the ANK1 gene. Conclusion: The novel ANK1 c.1504-9G>A variant is established as the causative factor for hereditary spherocytosis, with the c.1504-9G site functioning as a splicing receptor.

5.
World J Clin Cases ; 12(18): 3582-3588, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38983418

RESUMO

BACKGROUND: The aim of this study was to investigate the complex heterozygous mutations of ANK1 and SPTA1 in the same individual and improve our understanding of hereditary spherocytosis (HS) in children. We also hope to promote the application of gene detection technology in children with HS, with the goals of identifying more related gene mutations, supporting the acquisition of improved molecular genetic information to further reveal the pathogenesis of HS in children, and providing important guidance for the diagnosis, treatment, and prevention of HS in children. CASE SUMMARY: A 1-year and 5-month-old patient presented jaundice during the neonatal period, mild anemia 8 months later, splenic enlargement at 1 year and 5 months, and brittle red blood cell permeability. Genetic testing was performed on the patient, their parents, and sister. Swiss Model software was used to predict the protein structure of complex heterozygous mutations in ANK1 and SPTA1. Genetic testing revealed that the patient harbored a new mutation in the ANK1 gene from the father and a mutation in the SPTA1 gene from the mother. Combined with the clinical symptoms of the children, it is suggested that the newly discovered complex heterozygous mutations of ANK1 and SPTA1 may be the cause, providing important guidance for revealing the pathogenesis, diagnosis, treatment, and promotion of gene detection technology in children with HS. CONCLUSION: This case involves an unreported complex heterozygous mutation of ANK1 and SPTA1, which provides a reference for exploring HS.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38319988

RESUMO

Hereditary spherocytosis (HS) is the most common hereditary hemolytic disorder induced by red blood cell (RBC) membrane defect. This study was undertaken to determine mutations in genes associated with RBC membrane defect in patients with HS such as α-spectrin gene (SPTA1), ß-spectrin gene (SPTB), ankyrin gene (ANK1), band 3 anion transport gene (SLC4A1) and erythrocyte membrane protein band 4.1 gene (EPB41). Blood samples were collected from 23 unrelated patients with HS. Patients were diagnosed according to the guidelines from the British Society for Hematology. All hematological examinations for the determination of RBC abnormalities and osmotic fragility tests were conducted. Genomic DNA were extracted from peripheral blood cells and coding exons of known genes for hereditary spherocytosis were enriched using Roche/KAPA sequence capture technology and sequenced on an Illumina system via next-generation sequencing (NGS). The data showed that most of the HS patients confirmed splenomegaly and showed elevated reticulocytes and abnormal bilirubin values. NGS analysis identified the heterozygous variant c.5501G > A in the exon 39 of SPTA1 gene, resulted in a Trp1834*, which leads to a premature stop codon and subsequent mRNA degradation (nonsense- mediated decay) or truncation in α spectrin. Moreover, our data also revealed conventional mutations in genes SPTB, ANK, SLC4A1 and EBP41 in severe patients of HS. In short, this is the first report that determined a novel mutation c.5501G > A in SPTA1 gene in the Saudi population. To the best of our knowledge, this variant c.5501G > A has not been described in global literature so far. This novel mutation in SPTA1 gene is unique in the Saudi population.

7.
Gac. méd. Méx ; 142(5): 435-437, sept.-oct. 2006. ilus, tab
Artigo em Espanhol | LILACS | ID: lil-569503

RESUMO

Antecedentes. En México la esferocitosis hereditaria (EH) es la causa principal de anemia hemolítica hereditaria y se debe a mutaciones en uno o más genes implicados en la membrana eritrocitaria, lo que dificulta la identificación del gen primario. Objetivo. Con el fin de valorar la utilización de los polimorfismos G199A y NcoI del gen ANK1, y Memphis I del gen SLC4A1 como marcadores genéticos para identificar esta enfermedad, estimamos sus frecuencias alélicas y genotípicas en 45 muestras de ADN de pacientes con EH y 28 de individuos sanos, las cuales fueron similares en uno y otro grupos para los polimorfismos G199A y Memphis I, con baja frecuencia de heterocigotos, lo que limita su utilidad como marcador genético. Resultados. El polimorfismo NcoI no mostró diferencias alélicas y genotípicas en los grupos de estudio, pero sí mayor frecuencia de heterocigotos (0.49 y 0.43 en enfermos y sanos respectivamente), característica que le confiere ventajas para ser utilizado como marcador genético en familias con EH. Conclusiones. Finalmente, debido a que existen otros genes implicados en la patología molecular de la EH, consideramos que es necesario analizar otros polimorfismos de genes que codifican para las proteínas involucradas en las deficiencias que conducen a esferocitosis hereditaria en la población mexicana.


BACKGROUND: In Mexico, Hereditary Spherocytosis (HS) is the main cause of hereditary hemolytic anemia, due to mutations of one or more genes involved in the erythrocyte membrane, making it difficult to identify the primary gene. OBJECTIVE: With the purpose of estimating the use of the polymorphisms G199A and NcoI of ANK1 gene, and Memphis I of SLC4A1 gene, as genetic markers to screen this disease, we searched the allelic and genotypic frequencies in 45 DNA samples of HS patients and 28 from healthy individuals. RESULTS: Allelic and genotypic frequencies were similar in both studied groups for the G199A and Memphis I polymorphisms, with low frequency of heterozygosis showing its limited use as a genetic marker. The allelic and genotypic frequencies of the NcoI polymorphism were also similar in both groups, however a higher heterozygote frequency was observed (0.49 and 0.43 in patients and healthy individuals), a feature that may turn it into a useful genetic marker. CONCLUSIONS: Since there are other genes implicated in the molecular pathology of the HS, we consider it necessary to continue analyzing other polymorphisms of the genes involved in Hereditary Spherocytosis among the Mexican population.


Assuntos
Humanos , Anquirinas/genética , Esferocitose Hereditária/genética , Proteína 1 de Troca de Ânion do Eritrócito/genética , Anquirinas/metabolismo , DNA , Eritrócitos/metabolismo , Esferocitose Hereditária/metabolismo , Predisposição Genética para Doença , México , Mutação , Reação em Cadeia da Polimerase , Polimorfismo Genético , Proteína 1 de Troca de Ânion do Eritrócito/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA