Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(6): 104723, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37075843

RESUMO

Dysregulation of autophagy has been implicated in the development of many diseases, including cancer. Here, we revealed a novel function of the E3 ubiquitin ligase HRD1 in non-small cell lung carcinoma (NSCLC) metastasis by regulating autophagy. Mechanistically, HRD1 inhibits autophagy by promoting ATG3 ubiquitination and degradation. Additionally, a pro-migratory and invasive factor, MIEN1 (migration and invasion enhancer 1), was found to be autophagically degraded upon HRD1 deficiency. Importantly, expression of both HRD1 and MIEN1 are upregulated and positively correlated in lung tumors. Based on these results, we proposed a novel mechanism of HRD1 function that the degradation of ATG3 protein by HRD1 leads to autophagy inhibition and MIEN1 release, thus promoting NSCLC metastasis. Therefore, our findings provided new insights into the role of HRD1 in NSCLC metastasis and new therapeutic targets for lung cancer treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Ubiquitinação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Autofagia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
2.
J Hepatol ; 76(1): 11-24, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34555423

RESUMO

BACKGROUND & AIMS: Autophagy-related gene 3 (ATG3) is an enzyme mainly known for its actions in the LC3 lipidation process, which is essential for autophagy. Whether ATG3 plays a role in lipid metabolism or contributes to non-alcoholic fatty liver disease (NAFLD) remains unknown. METHODS: By performing proteomic analysis on livers from mice with genetic manipulation of hepatic p63, a regulator of fatty acid metabolism, we identified ATG3 as a new target downstream of p63. ATG3 was evaluated in liver samples from patients with NAFLD. Further, genetic manipulation of ATG3 was performed in human hepatocyte cell lines, primary hepatocytes and in the livers of mice. RESULTS: ATG3 expression is induced in the liver of animal models and patients with NAFLD (both steatosis and non-alcoholic steatohepatitis) compared with those without liver disease. Moreover, genetic knockdown of ATG3 in mice and human hepatocytes ameliorates p63- and diet-induced steatosis, while its overexpression increases the lipid load in hepatocytes. The inhibition of hepatic ATG3 improves fatty acid metabolism by reducing c-Jun N-terminal protein kinase 1 (JNK1), which increases sirtuin 1 (SIRT1), carnitine palmitoyltransferase 1a (CPT1a), and mitochondrial function. Hepatic knockdown of SIRT1 and CPT1a blunts the effects of ATG3 on mitochondrial activity. Unexpectedly, these effects are independent of an autophagic action. CONCLUSIONS: Collectively, these findings indicate that ATG3 is a novel protein implicated in the development of steatosis. LAY SUMMARY: We show that autophagy-related gene 3 (ATG3) contributes to the progression of non-alcoholic fatty liver disease in humans and mice. Hepatic knockdown of ATG3 ameliorates the development of NAFLD by stimulating mitochondrial function. Thus, ATG3 is an important factor implicated in steatosis.


Assuntos
Proteínas Relacionadas à Autofagia/antagonistas & inibidores , Fígado Gorduroso/prevenção & controle , Mitocôndrias Hepáticas/metabolismo , Enzimas de Conjugação de Ubiquitina/antagonistas & inibidores , Animais , Proteínas Relacionadas à Autofagia/farmacologia , Modelos Animais de Doenças , Fígado Gorduroso/fisiopatologia , Metabolismo dos Lipídeos/genética , Camundongos , Mitocôndrias Hepáticas/fisiologia , Proteômica/métodos , Enzimas de Conjugação de Ubiquitina/farmacologia
3.
Mol Biol Rep ; 49(11): 10269-10277, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36097121

RESUMO

BACKGROUND: The purpose of this study was to investigate the relationship between the expression of autophagy-related genes and prognosis in hepatocellular carcinoma (HCC). METHODS AND RESULTS: We selected three autophagy-related genes (ATG3, ATG7, and ATG9A) from gene expression data of liver cancer patients in The Cancer Genome Atlas (TCGA) database by Kaplan-Meier survival analysis, univariate and multivariate Cox regression analysis, and Gene Set Enrichment Analysis (GSEA). Human Protein Atlas (HPA) and Gene Expression Profiling Interactive Analysis (GEPIA) databases were applied to testify the credibility of our results. The expression levels of ATG3, ATG7, and ATG9A were verified by real-time quantitative PCR (RT-qPCR) in normal liver cells (L02) and three HCC cell lines (HepG2, Hep3b, and Li-7). Data analysis results from TCGA showed high ATG3, ATG7, ATG9A expression in HCC tumor tissues. Kaplan-Meier survival analysis showed that the survival rate of the high expression group of ATG3, ATG7, and ATG9A was all significantly lower than the low expression group. GSEA analysis showed that many signaling pathways (such as the regulation of autophagy, glycine serine and threonine metabolism, pathways in cancer, mitogen-activated protein kinase (MAPK) signaling pathway, mammalian target of rapamycin (mTOR) signaling pathway, as well as P53 signaling pathway) were differentially enriched in HCCs with ATG3, ATG7, and ATG9A expression. GEPIA and RT-qPCR also identified that the mRNA expression level of ATG3, ATG7, and ATG9A in normal liver cells were significantly lower than in HCC cells. High protein expression of ATG3, ATG7, and ATG9A was displayed in HCCs from the HPA database. CONCLUSIONS: The ATG3, ATG7, ATG9A might be utilized as prognostic biomarkers for liver cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Prognóstico , Perfilação da Expressão Gênica , Autofagia/genética , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica/genética
4.
Neurochem Res ; 46(12): 3200-3212, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34379294

RESUMO

Autophagy participates in the development of cerebral ischemia stroke. Autophagy-related 3 (ATG3), an important autophagy regulator, was reported to be upregulated in a rat model of cerebral ischemia/reperfusion (CI/R) injury and an oxygen-glucose deprivation/reoxygenation (OGD/R) cell model. However, the detailed role of ATG3 in CI/R injury remains elusive. An in vitro cellular model was established to mimic CI/R injury by exposing hBMECs and bEnd.3 cells to OGD/R. OGD/R-induced injury were evaluated by cell counting kit-8 (CCK-8), LDH release assay, caspase-3 activity assay and TUNEL assay. Inflammation was assessed by detecting mRNA expression and concentrations of interleukin-1ß (IL-1ß), IL-6 and tumor necrosis factor-α (TNF-α) using qRT-PCR and ELISA, respectively. The protein levels of ATG3, light chain 3 (LC3)-I, LC3-II, p62, protein kinase B (Akt), and phosphorylated Akt (p-Akt) were determined by western blot analysis. We successfully established an in vitro OGD/R injury model using hBMECs and bEnd.3 cells. ATG3 was time-dependently upregulated and ATG3 knockdown inhibited autophagy in OGD/R-challenged brain microvascular endothelial cells. Moreover, autophagy inhibition by ATG3 interference attenuated OGD/R-induced viability inhibition and increase of LDH release, caspase-3 activity, programmed cell death, and production of IL-1ß, IL-6 and TNF-α. Inhibition of autophagy by ATG3 silencing activated the phosphoinositide 3-kinase (PI3K)/Akt pathway in OGD/R-challenged brain microvascular endothelial cells. Furthermore, inhibition of the PI3K/Akt pathway reversed the protective effects of ATG3 silencing on OGD/R-induced injury and inflammation. In conclusion, autophagy inhibition by ATG3 knockdown remitted OGD/R-induced injury and inflammation in brain microvascular endothelial cells via activation of the PI3K/Akt pathway.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/antagonistas & inibidores , Autofagia , Células Endoteliais/fisiologia , Glucose/deficiência , Hipóxia/complicações , Inflamação/prevenção & controle , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Traumatismo por Reperfusão/prevenção & controle , Encéfalo/fisiopatologia , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia
5.
Acta Biochim Biophys Sin (Shanghai) ; 53(2): 140-148, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33382073

RESUMO

Myocardial injury is still a serious condition damaging the public health. Clinically, myocardial injury often leads to cardiac dysfunction and, in severe cases, death. Reperfusion of the ischemic myocardial tissues can minimize acute myocardial infarction (AMI)-induced damage. MicroRNAs are commonly recognized in diverse diseases and are often involved in the development of myocardial ischemia/reperfusion injury. However, the role of miR-431 remains unclear in myocardial injury. In this study, we investigated the underlying mechanisms of miR-431 in the cell apoptosis and autophagy of human cardiomyocytes in hypoxia/reoxygenation (H/R). H/R treatment reduced cell viability, promoted cell apoptotic rate, and down-regulated the expression of miR-431 in human cardiomyocytes. The down-regulation of miR-431 by its inhibitor reduced cell viability and induced cell apoptosis in the human cardiomyocytes. Moreover, miR-431 down-regulated the expression of autophagy-related 3 (ATG3) via targeting the 3'-untranslated region of ATG3. Up-regulated expression of ATG3 by pcDNA3.1-ATG3 reversed the protective role of the overexpression of miR-431 on cell viability and cell apoptosis in H/R-treated human cardiomyocytes. More importantly, H/R treatments promoted autophagy in the human cardiomyocytes, and this effect was greatly alleviated via miR-431-mimic transfection. Our results suggested that miR-431 overexpression attenuated the H/R-induced myocardial damage at least partly through regulating the expression of ATG3.


Assuntos
Apoptose , Proteínas Relacionadas à Autofagia/metabolismo , MicroRNAs/biossíntese , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Proteínas Relacionadas à Autofagia/genética , Humanos , MicroRNAs/genética , Traumatismo por Reperfusão Miocárdica/genética , Enzimas de Conjugação de Ubiquitina/genética
6.
FASEB J ; 33(7): 8008-8021, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30913399

RESUMO

Schwann cells are the main supportive cells of the peripheral nerves. Schwann cells suffer inhibition of autophagy under hyperglycemia treatment in diabetic peripheral neuropathy (DPN). However, the exact mechanism is still not fully elucidated. We first observed the decrease of autophagy markers (LC3-II/LC3-I, P62) in the sciatic nerves of diabetic mice vs. normal mice, accompanied with the loss of myelinated nerve fibers and abnormal myelin sheath. In line with this, LC3-II/LC3-I and P62 were also significantly reduced in high glucose-treated rat Schwann cell 96 (RSC96) cells compared with normal glucose-treated cells. Furthermore, we found that trichostatin A [an inhibitor of histone deacetylase (HDAC)] evidently improved LC3-II/LC3-I in high glucose-treated RSC96 cells, without an effect on P62 expression. Again, HDAC1 and HDAC5 were revealed to be increased in RSC96 cells stimulated with high glucose. Inhibition of HDAC1 but not HDAC5 by small hairpin RNA vector enhanced LC3-II/LC3-I in high glucose-cultured RSC96 cells. In addition, LC3-II conversion regulators [autophagy-related protein (Atg)3, Atg5, and Atg7] were detected in high glucose-treated and HDAC1-knockdown RSC96 cells, and Atg3 was proven to be the key target of HDAC1. The presuppression of Atg3 offset the improvement of LC3-II/LC3-I resulting from HDAC1 inhibition in high glucose-treated RSC96 cells. The Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway was activated in RSC96 cells treated with high glucose, which was indicated by increased STAT3 phosphorylation. Blocking STAT3 phosphorylation by chemical inhibitor AG490 induced HDAC1 down-regulation followed by increases in Atg3 and LC3-II/LC3-I. Interestingly, we also found that AG490 treatment enhanced P62 expression in high glucose-stimulated RSC96 cells. Taken together, our findings demonstrate that hyperglycemia inhibits LC3-II/LC3-I in an HDAC1-Atg3-dependent manner and decreases P62 expression in an HDAC-independent manner via the JAK-STAT3 signaling pathway in the Schwann cells of DPN.-Du, W., Wang, N., Li, F. Jia, K., An, J., Liu, Y., Wang, Y., Zhu, L., Zhao, S. Hao, J. STAT3 phosphorylation mediates high glucose-impaired cell autophagy in an HDAC1-dependent and -independent manner in Schwann cells of diabetic peripheral neuropathy.


Assuntos
Autofagia/efeitos dos fármacos , Neuropatias Diabéticas/metabolismo , Glucose/farmacologia , Histona Desacetilase 1/fisiologia , Processamento de Proteína Pós-Traducional , Fator de Transcrição STAT3/metabolismo , Células de Schwann/efeitos dos fármacos , Animais , Proteínas Relacionadas à Autofagia/antagonistas & inibidores , Proteínas Relacionadas à Autofagia/biossíntese , Proteínas Relacionadas à Autofagia/genética , Biomarcadores , Linhagem Celular , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Neuropatias Diabéticas/patologia , Técnicas de Silenciamento de Genes , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 1/genética , Histona Desacetilases/genética , Histona Desacetilases/fisiologia , Ácidos Hidroxâmicos/farmacologia , Camundongos , Proteínas Associadas aos Microtúbulos/biossíntese , Proteínas Associadas aos Microtúbulos/genética , Bainha de Mielina/patologia , Fibras Nervosas Mielinizadas/patologia , Peptídeo Sintases/antagonistas & inibidores , Peptídeo Sintases/biossíntese , Peptídeo Sintases/genética , Fosforilação , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Ratos , Células de Schwann/metabolismo , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia , Tirfostinas/farmacologia , Regulação para Cima
7.
EMBO Rep ; 19(6)2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29712776

RESUMO

Autophagy is an essential catabolic process responsible for recycling of intracellular material and preserving cellular fidelity. Key to the autophagy pathway is the ubiquitin-like conjugation system mediating lipidation of Atg8 proteins and their anchoring to autophagosomal membranes. While regulation of autophagy has been characterized at the level of transcription, protein interactions and post-translational modifications, its translational regulation remains elusive. Here we describe a role for the conserved eukaryotic translation initiation factor 5A (eIF5A) in autophagy. Identified from a high-throughput screen, we find that eIF5A is required for lipidation of LC3B and its paralogs and promotes autophagosome formation. This feature is evolutionarily conserved and results from the translation of the E2-like ATG3 protein. Mechanistically, we identify an amino acid motif in ATG3 causing eIF5A dependency for its efficient translation. Our study identifies eIF5A as a key requirement for autophagosome formation and demonstrates the importance of translation in mediating efficient autophagy.


Assuntos
Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Fatores de Iniciação de Peptídeos/fisiologia , Biossíntese de Proteínas , Proteínas de Ligação a RNA/fisiologia , Enzimas de Conjugação de Ubiquitina/metabolismo , Proteínas Relacionadas à Autofagia/genética , Humanos , Células MCF-7 , Proteínas Associadas aos Microtúbulos/metabolismo , Processamento de Proteína Pós-Traducional , Proteômica , Enzimas de Conjugação de Ubiquitina/genética , Fator de Iniciação de Tradução Eucariótico 5A
8.
Biochim Biophys Acta Mol Cell Res ; 1865(2): 364-378, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29108912

RESUMO

Autophagy and apoptosis are two major interconnected host cell responses to viral infection, including influenza A virus (IAV). Thus, delineating these events could facilitate the development of better treatment options and provide an effective anti-viral strategy for controlling IAV infection. We used A549 cells and mouse embryonic fibroblasts (MEF) to study the role of virus-induced autophagy and apoptosis, the cross-talk between both pathways, and their relation to IAV infection [ATCC strain A/Puerto Rico/8/34(H1N1) (hereafter; PR8)]. PR8-infected and mock-infected cells were analyzed by immunoblotting, immunofluorescence confocal microscopy, electron microscopy and flow cytometry (FACS). We found that PR8 infection simultaneously induced autophagy and apoptosis in A549 cells. Autophagy was associated with Bax and Bak activation, intrinsic caspase cleavage and subsequent PARP-1 and BID cleavage. Both Bax knockout (KO) and Bax/Bak double knockout MEFs displayed inhibition of virus-induced cytopathology and cell death and diminished virus-mediated caspase activation, suggesting that virus-induced apoptosis is Bax/Bak-dependent. Biochemical inhibition of autophagy induction with 3-methyladenine blocked both virus replication and apoptosis pathways. These effects were replicated using autophagy-refractory Atg3 KO and Atg5 KO cells. Taken together, our data indicate that PR8 infection simultaneously induces autophagy and Bax/caspase-dependent apoptosis, with autophagy playing a role to support PR8 replication, in part, by modulating virus-induced apoptosis.


Assuntos
Apoptose , Autofagia , Vírus da Influenza A Subtipo H1N1/fisiologia , Influenza Humana/metabolismo , Replicação Viral/fisiologia , Células A549 , Animais , Humanos , Influenza Humana/genética , Influenza Humana/patologia , Camundongos , Camundongos Knockout
9.
J Biol Chem ; 293(37): 14545-14556, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30026233

RESUMO

Toxoplasmosis is caused by an obligate intracellular parasite, the protozoan Toxoplasma gondii Discovery of novel drugs against T. gondii infection could circumvent the toxicity of existing drugs and T. gondii resistance to current treatments. The autophagy-related protein 8 (Atg8)-Atg3 interaction in T. gondii is a promising drug target because of its importance for regulating Atg8 lipidation. We reported previously that TgAtg8 and TgAtg3 interact directly. Here we validated that substitutions of conserved residues of TgAtg8 interacting with the Atg8 family-interacting motif (AIM) in Atg3 disrupt the TgAtg8-TgAtg3 interaction and reduce TgAtg8 lipidation and autophagosome formation. These findings were consistent with results reported previously for Plasmodium Atg8, suggesting functional conservation of Atg8 in Toxoplasma and Plasmodium. Moreover, using peptide and AlphaScreen assays, we identified the AIM sequence in TgAtg3 that binds TgAtg8. We determined that the core TgAtg3 AIM contains a Phe239-Ala240-Asp241-Ile242 (239FADI242) signature distinct from the 105WLLP108 signature in the AIM of Plasmodium Atg3. Furthermore, an alanine-scanning assay revealed that the TgAtg8-TgAtg3 interaction in T. gondii also depends strongly on several residues surrounding the core TgAtg3 AIM, such as Asn238, Asp243, and Cys244 These results indicate that distinct AIMs in Atg3 contribute to differences between Toxoplasma and Plasmodium Atg8-Atg3 interactions. By elucidating critical residues involved in the TgAtg8-TgAtg3 interaction, our work paves the way for the discovery of potential anti-toxoplasmosis drugs. The quantitative and straightforward AlphaScreen assay developed here may enable high-throughput screening for small molecules disrupting the TgAtg8-TgAtg3 interaction.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Sequência de Aminoácidos , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/química , Proteínas Relacionadas à Autofagia/genética , Proteínas de Fluorescência Verde/genética , Ligação Proteica , Conformação Proteica , Proteínas de Protozoários/química , Homologia de Sequência de Aminoácidos
10.
Cell Physiol Biochem ; 48(4): 1723-1734, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30078013

RESUMO

BACKGROUND/AIMS: Autophagy is a process of evolutionarily conservative degradation, which could maintain cellular homeostasis and cope with various types of stress. LncRNAs are considered as competing endogenous RNAs (ceRNAs) contributing to autophagy. GAS5 has been suggested as a new potential factor to mediate autophagy pathway and the underlying mechanism remains to be further confirmed. This study was taken to identify the effect of GAS5/miR-23a/ATG3 axis on autophagy and cell viability. METHODS: The western blotting assay was used to detecte the protein levels of LC3, mTOR, Beclin-1, ATG3, ATG5-ATG12 complex and p62. The mRNA level of Pre-miR-23a, Pri-miR-23a, miR-23a, GAS5, LC3, mTOR and ATG3 were quantified by real-time RT-PCR. Dual-luciferase reporter assays were performed to confirm the direct binding of miR-23a and ATG3 or GAS5. Cell viability was evaluated by CCK-8 and flow cytometry. RESULTS: We showed that miR-23a could directly suppress ATG3 expression in 293T cells, which suggested that ATG3 was identified as a target of miR-23a. MiR-23a mimics could restrain LC3 II, Beclin1 levles and ATG5-ATG12 complex formation. Meanwhile, miR-23a also increased the expression of mTOR and p62. Notably, there was a putative miR-23a-binding site in GAS5. MiR-23a overexpression might suppress the GAS5 expression, but the repressive effect was abolished by mutation of binding sites. Importantly, overexpression of GAS5 could inhibit the mature miR-23a and has no effect on miR-23a precursors. Knockdown of GAS5 suppressed the expression of LC3 II, ATG3 and ATG5-ATG12 complex formation, whereas p62 and mTOR levels were promoted. The further results showed that miR-23a overexpression and GAS5 inhibition both significantly suppressed cell viability and promoted the apoptosis rate following LPS stimulation, and knockdown of miR-23a exhibited the opposite effects. CONCLUSIONS: Our study revealed that down-regulation GAS5 attenuated cell viability and inhibited autophagy through ATG3-dependent autophagy by regulating miR-23a expression. The results suggested that GAS5/miR-23a/ATG3 axis might be a novel regulatory network contributing to a better understanding of regulation on autophagy program and cell viability.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Regiões 3' não Traduzidas , Antagomirs/metabolismo , Autofagia/efeitos dos fármacos , Proteínas Relacionadas à Autofagia/genética , Proteína Beclina-1/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células HEK293 , Humanos , Lipopolissacarídeos/farmacologia , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Interferência de RNA , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Enzimas de Conjugação de Ubiquitina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA