Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38397062

RESUMO

The ubiquitin/26S proteasome system is a crucial regulatory mechanism that governs various cellular processes in plants, including signal transduction, transcriptional regulation, and responses to biotic and abiotic stressors. Our study shows that the RING-H2-type E3 ubiquitin ligase, Arabidopsis Tóxicos en Levadura 2 (ATL2), is involved in response to fungal pathogen infection. Under normal growth conditions, the expression of the ATL2 gene is low, but it is rapidly and significantly induced by exogenous chitin. Additionally, ATL2 protein stability is markedly increased via chitin treatment, and its degradation is prolonged when 26S proteasomal function is inhibited. We found that an atl2 null mutant exhibited higher susceptibility to Alternaria brassicicola, while plants overexpressing ATL2 displayed increased resistance. We also observed that the hyphae of A. brassicicola were strongly stained with trypan blue staining, and the expression of A. brassicicola Cutinase A (AbCutA) was dramatically increased in atl2. In contrast, the hyphae were weakly stained, and AbCutA expression was significantly reduced in ATL2-overexpressing plants. Using bioinformatics, live-cell confocal imaging, and cell fractionation analysis, we revealed that ATL2 is localized to the plasma membrane. Further, it is demonstrated that the ATL2 protein possesses E3 ubiquitin ligase activity and found that cysteine 138 residue is critical for its function. Moreover, ATL2 is necessary to successfully defend against the A. brassicicola fungal pathogen. Altogether, our data suggest that ATL2 is a plasma membrane-integrated protein with RING-H2-type E3 ubiquitin ligase activity and is essential for the defense response against fungal pathogens in Arabidopsis.


Assuntos
Alternaria , Proteínas de Arabidopsis , Arabidopsis , Imunidade Vegetal , Alternaria/imunologia , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Quitina/metabolismo , Regulação da Expressão Gênica de Plantas , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
Genes (Basel) ; 14(8)2023 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-37628611

RESUMO

The disruption of endoplasmic reticulum (ER) homeostasis occurs in many human diseases. Atlastins (ATLs) maintain the branched network of the ER. The dysregulation of ATL2, located at ER network junctions, has been associated with cancer. ATL2 is necessary for lipid droplet formation in murine breast tissue. Thus, we analyzed whether ATL2 has a role in human breast cancer (BC) pathology. The expression of ATL2 variant ATL2-2 was analyzed in breast tumors from the BC cohorts of the TCGA, METABRIC, and two independent Icelandic cohorts, Cohort 1 and 2; its association with clinical, pathological, survival, and cellular pathways was explored. ATL2-2 mRNA and protein expression were higher in breast tumors than in normal tissue. ATL2-2 mRNA associated with tumor characteristics that indicate a worse prognosis. In METABRIC, high ATL2-2 mRNA levels were associated with shorter BC-specific survival (BCSS) in patients with estrogen-receptor-positive luminal breast tumors, which remained significant after correction for grade and tumor size (HR 1.334, CI 1.063-1.673). Tumors with high ATL2 mRNA showed an upregulation of hallmark pathways MYC targets v1, E2F targets, and G2M checkpoint genes. Taken together, the results suggest that high levels of ATL2-2 may support BC progression through key cancer driver pathways.


Assuntos
Neoplasias da Mama , Humanos , Animais , Camundongos , Feminino , Neoplasias da Mama/genética , Mama , Prognóstico , RNA Mensageiro , Estrogênios
3.
Arch Rheumatol ; 38(1): 119-128, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37235116

RESUMO

Objectives: This study aims to investigate the inflammatory effect of the microRNA (miRNA) miR-30e-5p on rheumatoid arthritis (RA) development in RA mice and fibroblast-like synoviocytes (FLS). Materials and methods: MiR-30e-5p and atlastin GTPase 2 (Atl2) expression in RA tissues and RA-FLS was evaluated using real-time quantitative polymerase chain reaction. The function of miR-30e-5p in inflammation of RA mice and RA-FLS was analyzed by enzyme-linked immunosorbent assay (ELISA) and Western blotting. 5-ethynyl-2'-deoxyuridine (EdU) assay was used to detect RA-FLS proliferation. Luciferase reporter assay was to confirm the interaction between miR-30e-5p and Atl2. Results: MiR-30e-5p expression was upregulated in the tissues from RA mice. Silencing miR-30e-5p alleviated inflammation in RA mice and RA-FLS. MiR-30e-5p negatively modulated Atl2 expression. Atl2 knockdown exerted a proinflammatory effect on RA-FLS. Atl2 knockdown rescued the inhibitory effect of miR-30e-5p knockdown on proliferation and inflammatory response of RA-FLS. Conclusion: MiR-30e-5p knockdown inhibited the inflammatory response in RA mice and RA-FLS through Atl2.

4.
Theranostics ; 11(18): 8855-8873, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34522215

RESUMO

Mitochondrial dysfunction and oxidative stress are frequently observed in the early stages of Alzheimer's disease (AD). Studies have shown that presenilin-1 (PS1), the catalytic subunit of γ-secretase whose mutation is linked to familial AD (FAD), localizes to the mitochondrial membrane and regulates its homeostasis. Thus, we investigated how five PS1 mutations (A431E, E280A, H163R, M146V, and Δexon9) observed in FAD affect mitochondrial functions. Methods: We used H4 glioblastoma cell lines genetically engineered to inducibly express either the wild-type PS1 or one of the five PS1 mutants in order to examine mitochondrial morphology, dynamics, membrane potential, ATP production, mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs), oxidative stress, and bioenergetics. Furthermore, we used brains of PS1M146V knock-in mice, 3xTg-AD mice, and human AD patients in order to investigate the role of PS1 in regulating MAMs formation. Results: Each PS1 mutant exhibited slightly different mitochondrial dysfunction. Δexon9 mutant induced mitochondrial fragmentation while A431E, E280A, H163R, and M146V mutants increased MAMs formation. A431E, E280A, M146V, and Δexon9 mutants also induced mitochondrial ROS production. A431E mutant impaired both complex I and peroxidase activity while M146V mutant only impaired peroxidase activity. All PS1 mutants compromised mitochondrial membrane potential and cellular ATP levels were reduced by A431E, M146V, and Δexon9 mutants. Through comparative profiling of hippocampal gene expression in PS1M146V knock-in mice, we found that PS1M146V upregulates Atlastin 2 (ATL2) expression level, which increases ER-mitochondria contacts. Down-regulation of ATL2 after PS1 mutant induction rescued abnormally elevated ER-mitochondria interactions back to the normal level. Moreover, ATL2 expression levels were significantly elevated in the brains of 3xTg-AD mice and AD patients. Conclusions: Overall, our findings suggest that each of the five FAD-linked PS1 mutations has a deleterious effect on mitochondrial functions in a variety of ways. The adverse effects of PS1 mutations on mitochondria may contribute to MAMs formation and oxidative stress resulting in an accelerated age of disease onset in people harboring mutant PS1.


Assuntos
Doença de Alzheimer/fisiopatologia , Mitocôndrias/fisiologia , Presenilina-1/genética , Trifosfato de Adenosina/metabolismo , Doença de Alzheimer/genética , Animais , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Técnicas de Introdução de Genes/métodos , Humanos , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Estresse Oxidativo/fisiologia , Presenilina-1/metabolismo
5.
Epigenomics ; 10(10): 1301-1313, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30215537

RESUMO

AIM: We aimed to explore the roles of circRNAs in gastric cancer. MATERIALS & METHODS: The dysregulated circRNAs and miRNAs were identified using data from Gene Expression Omnibus. The roles of specifically selected circRNAs were explored. Survival analysis was performed using data from the Cancer Genome Atlas. RESULTS: We identified 68 dysregulated circRNAs and 51 dysregulated miRNAs. We found that hsa_circ_0000993 inhibited migration, invasion and proliferation of gastric cancer cells and could act as a miRNA sponge for miR-214-5p but did not modulate expression of its parental gene, ATL2. Survival analysis showed that gastric cancer patients with lowly expressed miR-214-5p had a significantly better overall survival. CONCLUSION: In conclusion, hsa_circ_0000993 may inhibit metastasis of gastric cancer through sequestering miR-214-5p.


Assuntos
RNA/metabolismo , Neoplasias Gástricas/genética , Idoso , Linhagem Celular Tumoral , Movimento Celular , Conjuntos de Dados como Assunto , Perfilação da Expressão Gênica , Humanos , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Metástase Neoplásica , Análise de Sequência com Séries de Oligonucleotídeos , RNA/fisiologia , RNA Circular , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/patologia , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA