Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Environ Sci (China) ; 142: 226-235, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38527888

RESUMO

In North China, iodine-rich groundwater has been extensively studied, but few in South China. This study aimed to investigate the characteristics of iodine-rich groundwater in South China and identify potential contamination sources. The results revealed that the average concentration of iodine in groundwater was 890 µg/L, with a maximum concentration of 6350 µg/L, exceeding the permitted levels recommended by the World Health Organization (5-300 µg/L). Notably, the enrichment of iodide occurred in acidic conditions (pH = 6.6) and a relatively low Eh environment (Eh = 198.4 mV). Pearson correlation and cluster analyses suggested that the enrichment of iodide could be attributed to the intensified redox process involving Mn(II), iodine (I2), or iodate (IO3-) in the soil. The strong affinity between Mn(II) and I2/IO3- facilitated their interaction, resulting in the formation and mobilization of I- from the soil to the groundwater. Leaching experiments further confirmed that reducing substances (such as sodium sulfides, ascorbic acids, and fulvic acids) in the soil with low dissolved oxygen (DO) levels (< 1.0 mg/L) enhanced the dissolution of iodine species. Conversely, higher DO content (> 3.8 mg/L) promoted the oxidation of I- into I2 or IO3-, leading to its stabilization. This research provides new insights into the characteristics and mechanisms of I- enrichment in groundwater in South China, and emphasizes the significance of the redox reactions involving Mn(II) and I2/IO3-, as well as the influence of soil properties in regulating the occurrence and transportation of iodine species within groundwater systems.


Assuntos
Água Subterrânea , Iodo , Poluentes Químicos da Água , Iodo/análise , Iodetos/análise , Água Subterrânea/química , Solo , China , Poluentes Químicos da Água/análise , Monitoramento Ambiental
2.
Plant Mol Biol ; 113(4-5): 205-217, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37973765

RESUMO

The generation of adventitious roots (ARs) is the key to the success of cuttings. The appropriate environment for AR differentiation in tea plants is acidic. However, the mechanism is unclear. In this study, pH 4.5 was suitable condition for the differentiation of AR in tea plants. At the base of cuttings, the root primordia differentiated ARs more rapidly at pH 4.5 than pH 7.0, and nine AR differentiation-related genes were found to be differentially expressed in 30 days, the result was also validated by qRT-PCR. The promoter regions of these genes contained auxin and brassinosteroid response elements. The expression levels of several genes which were involved in auxin and brassinosteroid synthesis as well as signaling at pH 4.5 compared to pH 7.0 occurred differential expression. Brassinolide (BL) and indole-3-acetic acid (IAA) could affect the differentiation of ARs under pH 4.5 and pH 7.0. By qRT-PCR analysis of genes during ARs generation, BL and IAA inhibited and promoted the expression of CsIAA14 gene, respectively, to regulate auxin signal transduction. Meanwhile, the expression levels of CsKNAT4, CsNAC2, CsNAC100, CsWRKY30 and CsLBD18 genes were up-regulated upon auxin treatment and were positively correlated with ARs differentiation.This study showed that pH 4.5 was the most suitable environment for the root primordia differentiation of AR in tea plant. Proper acidic pH conditions promoted auxin synthesis and signal transduction. The auxin initiated the expression of AR differentiation-related genes, and promoted its differentiated. BL was involved in ARs formation and elongation by regulating auxin signal transduction.


Assuntos
Brassinosteroides , Camellia sinensis , Brassinosteroides/farmacologia , Brassinosteroides/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Ácidos Indolacéticos/farmacologia , Ácidos Indolacéticos/metabolismo , Perfilação da Expressão Gênica , Chá/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Clin Oral Investig ; 26(2): 1517-1530, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34392408

RESUMO

OBJECTIVES: A previous study showed that the combination of poly(amido amine) (PAMAM) and rechargeable composites with nanoparticles of amorphous calcium phosphate (NACP) induced dentin remineralization in an acidic solution with no initial calcium (Ca) and phosphate (P) ions, mimicking the oral condition of individuals with dry mouths. However, the frequent fluid challenge in the oral cavity may decrease the remineralization capacity. Therefore, the objective of the present study was to investigate the remineralization efficacy on dentin in an acid solution via PAMAM + NACP after fluid challenges for the first time. METHODS: The NACP nanocomposite was stored in a pH 4 solution for 77 days to exhaust its Ca and P ions and then recharged. Demineralized dentin samples were divided into four groups: (1) control dentin, (2) dentin coated with PAMAM, (3) dentin with recharged NACP composite, and (4) dentin with PAMAM + recharged NACP. PAMAM-coated dentin was shaken in phosphate-buffered saline for 77 days to desorb PAMAM from dentin. Samples were treated in pH 4 lactic acid with no initial Ca and P ions for 42 days. RESULTS: After 77 days of fluid challenge, PAMAM failed to prevent dentin demineralization in lactic acid. The recharged NACP nanocomposite raised the pH to above 6.5 and re-released more than 6.0 and 4.0 mmol/L Ca and P ions daily, respectively, which inhibited further demineralization. In contrast, the PAMAM + NACP combined method induced great dentin remineralization and restored the dentin microhardness to 0.54 ± 0.04 GPa, which approached that of sound dentin (P = 0.426, P > 0.05). CONCLUSIONS: The PAMAM + NACP combination achieved dentin remineralization in an acid solution with no initial Ca and P ions, even after severe fluid challenges. CLINICAL RELEVANCE: The novel PAMAM + NACP has a strong and sustained remineralization capability to inhibit secondary caries, even for individuals with dry mouths.


Assuntos
Nanocompostos , Remineralização Dentária , Aminas , Antibacterianos , Biofilmes , Fosfatos de Cálcio , Dentina , Humanos , Íons
4.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36555225

RESUMO

Brackets are metallic dental devices that are very often associated with acidic soft drinks such as cola and energy drinks. Acid erosion may affect the bonding between brackets and the enamel surface. The purpose of this study was to investigate the characteristics of brackets' adhesion, in the presence of two different commercially available drinks. Sixty human teeth were divided into six groups and bonded with either resin-modified glass ionomer (RMGIC) or resin composite (CR). A shared bond test (SBS) was evaluated by comparing two control groups with four other categories, in which teeth were immersed in either Coca-ColaTM or Red BullTM energy drink. The debonding between the bracket and enamel was evaluated by SEM. The morphological aspect correlated with SBS results showed the best results for the samples exposed to artificial saliva. The best adhesion resistance to the acid erosion environment was observed in the group of teeth immersed in Red BullTM and with brackets bonded with RMGIC. The debonded structures were also exposed to Coca-ColaTM and Red BullTM to assess, by atomic force microscopy investigation (AFM), the erosive effect on the enamel surface after debonding and after polishing restoration. The results showed a significant increase in surface roughness due to acid erosion. Polishing restoration of the enamel surface significantly reduced the surface roughness that resulted after debonding, and inhibited acid erosion. The roughness values obtained from polished samples after exposure to Coca-ColaTM and Red BullTM were significantly lower in that case than for the debonded structures. Statistical results evaluating roughness showed that Red BullTM has a more erosive effect than Coca-Cola™. This result is supported by the large contact surface that resulted after debonding. In conclusion, the prolonged exposure of the brackets to acidic drinks affected the bonding strength due to erosion propagation into both the enamel-adhesive interface and the bonding layer. The best resistance to acid erosion was obtained by RMGIC.


Assuntos
Colagem Dentária , Braquetes Ortodônticos , Humanos , Propriedades de Superfície , Resinas Acrílicas , Resinas Compostas , Teste de Materiais , Cimentos de Resina/química
5.
Trends Plant Sci ; 29(4): 388-390, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38102047

RESUMO

Aluminum (Al) toxicity is a crucial limiting factor for crop growth in acid soils. Recently, Liu et al. demonstrated that the root microbiota of rice modulates the responses to Al toxicity and phosphorus limitation, offering intriguing insights into microbiome function and opening new research opportunities.


Assuntos
Microbiota , Oryza , Solo , Plantas , Fósforo , Alumínio , Concentração de Íons de Hidrogênio , Raízes de Plantas
6.
Materials (Basel) ; 17(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39063678

RESUMO

Concrete structures face significant challenges in sulfate-rich environments, where sulfate attack can affect their durability and structural integrity. This study explores innovative approaches to enhancing concrete performance by integrating hydrophobic and densification technologies. It emphasizes the critical role of anti-sulfate erosion inhibitors in mitigating sulfate-induced damage, reducing water absorption, and inhibiting corrosive reactions. This research addresses prevalent issues in Chinese engineering projects where high sulfate concentrations are common, necessitating robust solutions for sulfate resistance. Through rigorous testing, including wet-dry cycling tests with 5% and 10% Na2SO4 solutions following the GB/T 50082-2009 standard, concrete formulations achieved exceptional long-term sulfate resistance, meeting or exceeding KS200-grade requirements. These findings provide valuable insights into optimizing concrete durability in sulfate-rich environments, offering practical strategies to enhance infrastructure resilience and reduce maintenance costs.

7.
Talanta ; 252: 123764, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35969927

RESUMO

The external acid environment of cancer cells is different from that of normal cells, making a profound impact on cancer progression. Here we report a simple poly-l-lysine-modified graphene field-effect transistor (PLL@G-FET) for in situ monitoring of extracellular acidosis around cancer cells. PLL is a well-known material with good biocompatibility and is rich in amino groups that are sensitive to hydrogen ions. After a simple drop-casting of PLL on the reduced graphene oxide (RGO) FET surface, the PLL@G-FET was able to realize the real-time monitoring of the localized pH change of cancer cells after the cancer cells were grown on the device. The PLL@G-FET sensor achieved a Nernstian value of 52.9 mV/pH in phosphate buffer saline from pH 4.0 to 8.0. In addition, the sensor exhibited excellent biocompatibility as well as good anti-interference ability in the cell culture medium. Furthermore, the device was used to real-time monitor the extracellular pH changes of MCF-7 cells under the intervention of different concentrations of drugs. This developed pH-sensitive FET provides a new method to study the extracellular acid environment in situ and helps us to enhance our understanding of cancer cell metabolism.


Assuntos
Técnicas Biossensoriais , Grafite , Neoplasias , Humanos , Transistores Eletrônicos , Técnicas Biossensoriais/métodos , Grafite/toxicidade , Células MCF-7 , Concentração de Íons de Hidrogênio
8.
Foods ; 11(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35681380

RESUMO

Functionalized small-molecule assemblies can exhibit nano-delivery properties that significantly improve the bioavailability of bioactive molecules. This study explored the self-assembly of short-chain fatty acids (FA, Cn < 8) to form novel biomimetic nanovesicles as delivery systems. Lactic acid is involved in the regulation of multiple signaling pathways in cancer metabolism, and the dissociation of lactic acid (LA) is used to regulate the delivery effect of short-chain fatty acid vesicles. The study showed that the dissociation of lactic acid caused pH changes in the solution environment inducing hydrogen ion permeability leading to rapid osmotic expansion and shape transformation of FA vesicles. The intrinsic features of FA vesicle formation in the LA environment accompanied by hydrogen ion fluctuations, and the appearance of nearly spherical vesicles were investigated by transmission electron microscopy (TEM) and Fourier Transform Infrared Spectroscopy (FTIR). Compared with the vesicle membrane built by surfactants, the FA/LA composite system showed higher permeability and led to better membrane stability and rigidity. Finally, membrane potential studies with the IEC cell model demonstrate that lactate dissociation capacity can effectively increase the cellular adsorption of FA vesicles. Altogether, these results prove that FA vesicles can function as a stand-alone delivery system and also serve as potential development strategies for applications in a lactate environment.

9.
Environ Sci Pollut Res Int ; 28(16): 20111-20120, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33410009

RESUMO

The pore characteristics and radon exhalation of uranium tailings solidified in an acid environment were investigated in this study. Tailings from the beach of a uranium tailing reservoir in the acid rain area of Central China were selected as samples and solidified with cement, slag powder (GGBS), metakaolin (MK), or slag powder and metakaolin (GM), then immersed in simulated acid rain solution for 60 days. The transverse relaxation time T2 distribution and porosity of each solidified sample before and after immersion were measured by nuclear magnetic resonance (NMR) and the cumulative radon concentration before and after immersion was measured by a RAD7 radon meter. The experimental results show that the nuclear magnetic resonance T2 distribution curve shifts to the left, the peak amplitude decreases, and the pores in the sample gradually shrink as the admixture content increases. The porosity and radon exhalation rate of solidified samples also appear to decrease gradually as admixture content increases; a quadratic function relationship was observed between porosity and radon exhalation rate. The pore size and effective pore volume of solidified samples increase as immersion time increases, while the radon exhalation rate increases and the pore volume gradually increases. The results of this study may provide a sound theoretical basis for the solidification treatment of uranium tailings in engineering practice.


Assuntos
Monitoramento de Radiação , Radônio , Poluentes Radioativos do Solo , Urânio , China , Expiração , Radônio/análise , Poluentes Radioativos do Solo/análise , Urânio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA