Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 238(Pt 2): 117253, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37778599

RESUMO

As a kind of scarce metal, palladium is widely used in many chemical industries. It essential to recover palladium from secondary resources, especially acidic media, owing to high content of palladium in secondary wastes and widespread extraction of palladium via strong acids. Chemically modified carbon materials not only have the advantage of activated carbon but also achieve the precise removal of specific pollutants, which is a kind of adsorption material with broad application prospects. In this direction, we report a solid carbon material named AT-C, which is obtained by one-step synthesis of 2-aminothiazoles grafted to the carbon surface by amidation. The present adsorbent delivers a high palladium adsorption capacity of 178.9 mg g-1, and desirable thermal and chemical stability. The uniform presence of abundant sulfur atoms and CO in the porous network enables AT-C to achieve selective absorption and rapid adsorption kinetics of Pd2+ in the complex water mixture containing many competing ions in the acidic pH range. For the strongly acidic leachates of catalysts, AT-C exhibits outstanding stability in cyclic experiments. Meanwhile, the fixed-bed column test indicates that 1076 bed volumes of the feeding streams can be effectively treated. In addition, AT-C exhibits superior adsorption selectivity, and the recovery efficiency of Pd2+ in actual industrial wastewater is 96.6%. This work realizes an efficient, rapid, and selective removal of palladium under acidic conditions, and provides a reference for complex industrial water treatment and resource recovery of precious metals.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Paládio , Carvão Vegetal , Tiazóis , Poluentes Químicos da Água/química , Adsorção , Cinética
2.
Environ Monit Assess ; 194(4): 280, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35292869

RESUMO

Mining Ag, Cu, Pb, and Zn sulfides by flotation produces great volume of residues, which oxidized through time and release acid solutions. Leachates from tailing heaps are a concern due to the risk of surface water pollution. Hydroxyapatite nanoparticles may remove trace elements from acid leachate collected from an oxidized tailing heap (pH ranged 1.69 ± 0.3 to 2.23 ± 0.16; [SO42-] = 58 ± 0.67 to 60.69 ± 0.39 mmol). Based on the batch experiments under standard conditions, the average removal efficiency was 96%, 92%, 86%, and 67% for Cd, Pb, Zn, and Cu, respectively. The Zn adsorption was modeled by the Freundlich equation, but Cd, Cu, and Pb isotherms do not fit to Freundlich nor Lagmuir equations. Adsorption and other mechanisms occur during trace elements removal by hydroxyapatite. In the polymetallic system, trace elements saturate the specific surface of hydroxyapatite in the following order Zn, Cd, Cu, and Pb. The pH values must be higher than 7.5 to adsorb trace elements. The dose of 3.8% of hydroxyapatite to acid mine drainage removed efficiently > 80% of the soluble Fe, Cu, Mn, Zn, Cd, Ni, and Pb: 4020.0, 37.3, 34.8, 432.0, 4.4, 0.7, and 0.11 mg L-1 from leachate A and 3357.1, 46.6, 27.8, 569.0, 4.7, 0.6, and 1.7 from leachate B, respectively. The application of 0.7% of hydroxyapatite decreased the extractable Pb in unoxidized tailing heaps from 272 to 100 mg kg-1. It is likely to use hydroxyapatite to control trace element mobility from mine residues to surrounding soils and surface water.


Assuntos
Metais Pesados , Poluentes do Solo , Oligoelementos , Adsorção , Durapatita , Monitoramento Ambiental , Metais Pesados/análise , Poluentes do Solo/análise , Oligoelementos/análise
3.
Water Res ; 238: 120024, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37156102

RESUMO

Phosphorus recovery from incinerated sewage sludge ash (ISSA) is important but hindered by low selectivity. Here, a novel strategy of acid leaching followed by thermally induced precipitation was proposed for the efficient and selective recovery of FePO4 from ISSA samples. A high phosphorus leaching efficiency of ∼ 99.6% was achieved with 0.2 mol/L H2SO4 and liquid to solid (L/S) ratio of 50 mL/g. Without removing various co-existing ions (Al3+, Ca2+, SO42-, etc.), high-purity FePO4 of ∼ 92.9% could be facilely produced from this highly acidic H2SO4 leachate (pH = 1.2) by simple addition of Fe(III) at a molar ratio of 1:1 to the phosphorus and reacted at 80 °C for thermally induced precipitation. The remained acid leachate could be further reused for five times to continue leaching phosphorus from the ISSA samples and produce the FePO4 precipitates with a high phosphorus recovery efficiency of 81.1 ± 1.8%. The selective recovery of FePO4 from the acid leachate was demonstrated more thermodynamically favorable compared to other precipitates at this acidic pH of 1.2, and elevated temperature of 80 °C towards thermally induced precipitation. The estimated cost of this strategy was ∼$26.9/kg-P and lower than that of other existing technologies. The recovered FePO4 precipitates could be used as a phosphate fertilizer to promote the growth of ryegrass, and also as a precursor to synthesize high-value LiFePO4 battery material, demonstrating the high-value application potential of the phosphorus from the ISSA.


Assuntos
Compostos Férricos , Esgotos , Incineração , Fósforo , Fosfatos , Ferro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA