Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 249
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 182(4): 1009-1026.e29, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32730809

RESUMO

Electrophilic compounds originating from nature or chemical synthesis have profound effects on immune cells. These compounds are thought to act by cysteine modification to alter the functions of immune-relevant proteins; however, our understanding of electrophile-sensitive cysteines in the human immune proteome remains limited. Here, we present a global map of cysteines in primary human T cells that are susceptible to covalent modification by electrophilic small molecules. More than 3,000 covalently liganded cysteines were found on functionally and structurally diverse proteins, including many that play fundamental roles in immunology. We further show that electrophilic compounds can impair T cell activation by distinct mechanisms involving the direct functional perturbation and/or degradation of proteins. Our findings reveal a rich content of ligandable cysteines in human T cells and point to electrophilic small molecules as a fertile source for chemical probes and ultimately therapeutics that modulate immunological processes and their associated disorders.


Assuntos
Cisteína/metabolismo , Ligantes , Linfócitos T/metabolismo , Acetamidas/química , Acetamidas/farmacologia , Acrilamidas/química , Acrilamidas/farmacologia , Células Cultivadas , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Proteínas Tirosina Quinases/metabolismo , Proteólise/efeitos dos fármacos , Proteoma/química , Proteoma/metabolismo , Estereoisomerismo , Linfócitos T/citologia , Linfócitos T/imunologia , Ubiquitina-Proteína Ligases/metabolismo
2.
Mol Cell ; 83(10): 1725-1742.e12, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37084731

RESUMO

Most human proteins lack chemical probes, and several large-scale and generalizable small-molecule binding assays have been introduced to address this problem. How compounds discovered in such "binding-first" assays affect protein function, nonetheless, often remains unclear. Here, we describe a "function-first" proteomic strategy that uses size exclusion chromatography (SEC) to assess the global impact of electrophilic compounds on protein complexes in human cells. Integrating the SEC data with cysteine-directed activity-based protein profiling identifies changes in protein-protein interactions that are caused by site-specific liganding events, including the stereoselective engagement of cysteines in PSME1 and SF3B1 that disrupt the PA28 proteasome regulatory complex and stabilize a dynamic state of the spliceosome, respectively. Our findings thus show how multidimensional proteomic analysis of focused libraries of electrophilic compounds can expedite the discovery of chemical probes with site-specific functional effects on protein complexes in human cells.


Assuntos
Proteômica , Fatores de Transcrição , Humanos , Proteômica/métodos , Cisteína/metabolismo , Ligantes
3.
Annu Rev Biochem ; 83: 341-77, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24905785

RESUMO

Eukaryotic and prokaryotic organisms possess huge numbers of uncharacterized enzymes. Selective inhibitors offer powerful probes for assigning functions to enzymes in native biological systems. Here, we discuss how the chemical proteomic platform activity-based protein profiling (ABPP) can be implemented to discover selective and in vivo-active inhibitors for enzymes. We further describe how these inhibitors have been used to delineate the biochemical and cellular functions of enzymes, leading to the discovery of metabolic and signaling pathways that make important contributions to human physiology and disease. These studies demonstrate the value of selective chemical probes as drivers of biological inquiry.


Assuntos
Química Farmacêutica/métodos , Desenho de Fármacos , Inibidores Enzimáticos/química , Proteômica/métodos , Animais , Ligação Competitiva , Linhagem Celular Tumoral , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Perfilação da Expressão Gênica , Humanos , Lactonas/química , Fenótipo , Fotoquímica/métodos , Proteoma
4.
Trends Biochem Sci ; 47(9): 785-794, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35430135

RESUMO

Current tools to annotate protein function have failed to keep pace with the speed of DNA sequencing and exponentially growing number of proteins of unknown function (PUFs). A major contributing factor to this mismatch is the historical lack of high-throughput methods to experimentally determine biochemical activity. Activity-based methods, such as activity-based metabolite and protein profiling, are emerging as new approaches for unbiased, global, biochemical annotation of protein function. In this review, we highlight recent experimental, activity-based approaches that offer new opportunities to determine protein function in a biologically agnostic and systems-level manner.

5.
Proc Natl Acad Sci U S A ; 120(52): e2304900120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38109529

RESUMO

Diacylglycerol lipase-beta (DAGLß) serves as a principal 2-arachidonoylglycerol (2-AG) biosynthetic enzyme regulating endocannabinoid and eicosanoid metabolism in immune cells including macrophages and dendritic cells. Genetic or pharmacological inactivation of DAGLß ameliorates inflammation and hyper-nociception in preclinical models of pathogenic pain. These beneficial effects have been assigned principally to reductions in downstream proinflammatory lipid signaling, leaving alternative mechanisms of regulation largely underexplored. Here, we apply quantitative chemical- and phospho-proteomics to find that disruption of DAGLß in primary macrophages leads to LKB1-AMPK signaling activation, resulting in reprogramming of the phosphoproteome and bioenergetics. Notably, AMPK inhibition reversed the antinociceptive effects of DAGLß blockade, thereby directly supporting DAGLß-AMPK crosstalk in vivo. Our findings uncover signaling between endocannabinoid biosynthetic enzymes and ancient energy-sensing kinases to mediate cell biological and pain responses.


Assuntos
Endocanabinoides , Glicerídeos , Humanos , Endocanabinoides/metabolismo , Glicerídeos/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Lipase Lipoproteica/metabolismo , Ácidos Araquidônicos/metabolismo , Dor
6.
Mol Cell Proteomics ; 22(1): 100455, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36435334

RESUMO

Most drug molecules target proteins. Identification of the exact drug binding sites on these proteins is essential to understand and predict how drugs affect protein structure and function. To address this challenge, we developed a strategy that uses immobilized metal-affinity chromatography-enrichable phosphonate affinity tags, for efficient and selective enrichment of peptides bound to an activity-based probe, enabling the identification of the exact drug binding site. As a proof of concept, using this approach, termed PhosID-ABPP (activity-based protein profiling), over 500 unique binding sites were reproducibly identified of an alkynylated afatinib derivative (PF-06672131). As PhosID-ABPP is compatible with intact cell inhibitor treatment, we investigated the quantitative differences in approachable binding sites in intact cells and in lysates of the same cell line and observed and quantified substantial differences. Moreover, an alternative protease digestion approach was used to capture the previously reported binding site on the epidermal growth factor receptor, which turned out to remain elusive when using solely trypsin as protease. Overall, we find that PhosID-ABPP is highly complementary to biotin-based enrichment strategies in ABPP studies, with PhosID-ABPP providing the advantage of direct activity-based probe interaction site identification.


Assuntos
Organofosfonatos , Organofosfonatos/farmacologia , Proteínas/metabolismo , Peptídeos/metabolismo , Linhagem Celular , Tripsina/química
7.
Mol Cell Proteomics ; 22(8): 100609, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37385347

RESUMO

Dampening functional levels of the mitochondrial deubiquitylating enzyme Ubiquitin-specific protease 30 (USP30) has been suggested as an effective therapeutic strategy against neurodegenerative disorders such as Parkinson's Disease. USP30 inhibition may counteract the deleterious effects of impaired turnover of damaged mitochondria, which is inherent to both familial and sporadic forms of the disease. Small-molecule inhibitors targeting USP30 are currently in development, but little is known about their precise nature of binding to the protein. We have integrated biochemical and structural approaches to gain novel mechanistic insights into USP30 inhibition by a small-molecule benzosulfonamide-containing compound, USP30inh. Activity-based protein profiling mass spectrometry confirmed target engagement, high selectivity, and potency of USP30inh for USP30 against 49 other deubiquitylating enzymes in a neuroblastoma cell line. In vitro characterization of USP30inh enzyme kinetics inferred slow and tight binding behavior, which is comparable with features of covalent modification of USP30. Finally, we blended hydrogen-deuterium exchange mass spectrometry and computational docking to elucidate the molecular architecture and geometry of USP30 complex formation with USP30inh, identifying structural rearrangements at the cleft of the USP30 thumb and palm subdomains. These studies suggest that USP30inh binds to this thumb-palm cleft, which guides the ubiquitin C terminus into the active site, thereby preventing ubiquitin binding and isopeptide bond cleavage, and confirming its importance in the inhibitory process. Our data will pave the way for the design and development of next-generation inhibitors targeting USP30 and associated deubiquitinylases.


Assuntos
Enzimas Desubiquitinantes , Mitofagia , Enzimas Desubiquitinantes/antagonistas & inibidores , Enzimas Desubiquitinantes/metabolismo , Proteínas Mitocondriais/metabolismo , Mitofagia/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Sulfonamidas/farmacologia
8.
Semin Cell Dev Biol ; 132: 86-96, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35216867

RESUMO

The reversible attachment of ubiquitin (Ub) and ubiquitin like modifiers (Ubls) to proteins are crucial post-translational modifications (PTMs) for many cellular processes. Not only do cells possess hundreds of ligases to mediate substrate specific modification with Ub and Ubls, but they also have a repertoire of more than 100 dedicated enzymes for the specific removal of ubiquitin (Deubiquitinases or DUBs) and Ubl modifications (Ubl-specific proteases or ULPs). Over the past two decades, there has been significant progress in our understanding of how DUBs and ULPs function at a molecular level and many novel DUBs and ULPs, including several new DUB classes, have been identified. Here, the development of chemical tools that can bind and trap active DUBs has played a key role. Since the introduction of the first activity-based probe for DUBs in 1986, several innovations have led to the development of more sophisticated tools to study DUBs and ULPs. In this review we discuss how chemical biology has led to the development of activity-based probes and substrates that have been invaluable to the study of DUBs and ULPs. We summarise our currently available toolbox, highlight the main achievements and give an outlook of how these tools may be applied to gain a better understanding of the regulatory mechanisms of DUBs and ULPs.


Assuntos
Peptídeo Hidrolases , Ubiquitina , Peptídeo Hidrolases/metabolismo , Ubiquitina/metabolismo , Processamento de Proteína Pós-Traducional , Enzimas Desubiquitinantes/metabolismo , Biologia , Ubiquitinação
9.
Chembiochem ; : e202400333, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39229773

RESUMO

This study explores using activity-based protein profiling to target protein tyrosine phosphatases. With the discovery of allosteric SHP2 inhibitors, this enzyme family has resurfaced as interesting drug targets. Therefore, we envisioned that previously described direct electrophiles and quinone methide-based traps targeting phosphatases could be applied in competitive activity-based protein profiling assays. This study evaluates three direct electrophiles, specifically, a vinyl sulfonate, a vinyl sulfone, and an α-bromobenzylphosphonate as well as three quinone methide-based traps as activity-based probes. For all these moieties it was previously shown that they could selectively engage with phosphatases in assays with purified enzymes or overexpressed phosphatases in bacterial lysates. However, this study demonstrates that probes based on these moieties all suffer from unspecific labelling. Direct electrophiles were either unspecific or not activity-based, while quinone methide-based traps showed dependence on phosphatase activity but also resulted in unspecific labelling due to diffusion after activation. This phenomenon, termed 'bystander' labelling, occurred even with catalytically inactive SHP2 mutants. We concluded that alternative strategies or chemistries are needed to apply activity-based protein profiling in phosphatase research. Moreover, this study shows that quinone methide-based designs have limited potential in probe and inhibitor development strategies due to their intrinsic reactivity.

10.
Chembiochem ; 25(4): e202300736, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38195841

RESUMO

PROTAC linker design remains mostly an empirical task. We employed the PRosettaC computational software in the design of sulfonyl-fluoride-based PROTACs targeting acyl protein thioesterase 1 (APT1). The software efficiently generated ternary complex models from empirically-designed PROTACs and suggested alkyl linkers to be the preferred type of linker to target APT1. Western blotting analysis revealed efficient degradation of APT1 and activity-based protein profiling showed remarkable selectivity of an alkyl linker-based PROTAC amongst serine hydrolases. Collectively, our data suggests that combining PRosettaC and chemoproteomics can effectively assist in triaging PROTACs for synthesis and providing early data on their potency and selectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA