Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Small ; 19(34): e2301760, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37162496

RESUMO

In this study, silver nanowires (Ag NWs) are synthesized at first, and then the 1D heterogeneous Co/C@Ag NWs with a kebab- and popsicle-like microstructures are constructed by in situ growth ZIF-67 on Ag NWs combined with calcination. Results show that the EM wave prevention performance of composites depends on the loading of Co/C particles threaded on the Ag NWs. The popsicle-like structure with high Co/C loading gives Co/C@Ag NWs excellent EM wave absorption performance, which achieved a minimum reflection loss (RLmin ) of -44.5 dB with a low filling of 30 wt.% in paraffin; while the kebab-like structure with low Co/C loading shows good electromagnetic interference (EMI) shielding effectiveness (SET ) of 30.2 dB at the same filler ratio. The enhanced EM wave absorption performance is attributed to the synergy of multiple energy dissipation mechanisms including dielectric loss, magnetic loss, polarization loss, eddy-current loss, multiple reflection loss, as well as proper impedance matching; the good EMI shielding performance is mainly due to the conduction loss brought by the Ag NWs with ultrahigh conductivity. This work provides a reference for the design of electromagnetic wave prevention material with tuned absorption and shielding performance.

2.
Environ Res ; 204(Pt C): 112289, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34743809

RESUMO

The sensitive detection of malachite green (MG) in aquaculture wastewater is necessary for its residual poses a great threat to the living systems. Herein, the flower-like C3N4 (f-C3N4) nanostructure induced by Al sheet in the hydrothermal process is constructed. Subsequently, Ag nanowires (AgNWs) supported on Al/f-C3N4 and the strong interaction between AgNWs and Al/f-C3N4 are confirmed by XPS, Raman spectroscopy, UV-vis diffuse reflectance and fluorescence spectroscopy. Importantly, the portable Al/f-C3N4/AgNWs substrate shows the outstanding SERS response for MG, which is attributed to enhanced electromagnetic effect of AgNWs on large amount of corrugated and creviced regions in the flower-like Al/f-C3N4 and the charge transfer among the components. Also, the prepared Al/f-C3N4 nanostructure provides large specific surface area and abundant "N" active sites for AgNWs, and the high enrichment ability of Al/f-C3N4 towards MG molecules by the strong π-π stacking interaction. The detection limit of Al/f-C3N4/AgNWs for MG is as low as 8.38 × 10-12 mol L-1. The substrate can be reproduced and reused for at least 7 cycles, and the activity can still be kept after laid up for 49 days. Importantly, it unfolds a good sensitivity and selectivity for MG in actual water sample. Results indicate that the Al/f-C3N4/AgNWs substrate has a promising potential in practical application for trace detection of MG.


Assuntos
Nanofios , Prata , Alumínio , Nanofios/química , Nitrilas , Corantes de Rosanilina , Prata/química
3.
Molecules ; 27(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36558040

RESUMO

Silver nanowires, which have high optoelectronic properties, have the potential to supersede indium tin oxide in the field of electrocatalysis, stretchable electronic, and solar cells. Herein, four mainstream experimental methods, including Mayer-rod coating, spin coating, spray coating, and vacuum filtration methods, are employed to fabricate transparent conductive films based on the same silver nanowires to clarify the significance of preparation methods on the performance of the films. The surface morphology, conductive property, uniformity, and flexible stability of these four Ag NW-based films, are analyzed and compared to explore the advantages of these methods. The transparent conductive films produced by the vacuum filtration method have the most outstanding performance in terms of surface roughness and uniformity, benefitting from the stronger welding of NW-NW junctions after the press procedure. However, limited by the size of the membrane and the vacuum degree of the equipment, the small-size Ag films used in precious devices are appropriate to obtain through this method. Similarly, the spin coating method is suited to prepare Ag NWs films with small sizes, which shows excellent stability after the bending test. In comparison, much larger-size films could be obtained through Mayer-rod coating and spray coating methods. The pull-down speed and force among the Mayer-rod coating process, as well as the spray distance and traveling speed among the spray coating process, are essential to the uniformity of Ag NW films. After being treated with NaBH4 and polymethyl methacrylate (PMMA), the obtained Ag NW/PMMA films show great potential in the field of film defogging due to the Joule heating effect. Taken together, based on the advantages of each preparation method, the Ag NW-based films with desired size and performances are easier to prepare, meeting the requirements of different application fields.

4.
Molecules ; 27(22)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36432131

RESUMO

Conductive silver paste is a key material in the fields of printed circuits and printed electronic devices. However, the preparation of conductive silver paste with low-cost and volatile organic compounds (VOCs) is still a challenge. In this work, conductive silver pastes with excellent comprehensive performances were developed by using water-borne polyurethane (WPU) as the bonding phase and using the ternary mixture of Ag microflakes (Ag MFs), Ag nanowires (Ag NWs), and Ag nanoparticles (Ag NPs) as the conductive phase. WPU endowed conductive silver pastes with the adhesion along with releasing a few VOCs during the curing. Results showed that a small amount of Ag NPs or Ag NWs dramatically enhanced the electrical conductivity of silver paste paint film filled only with Ag MFs. The electrical resistivity for optimal ternary mixture conductive silver paste was 0.2 × 10-3 Ω∙cm, and the conductive phase was composed of 20.0 wt% Ag MFs, 7.5 wt% Ag NWs, and 2.5 wt% Ag NPs. Meanwhile, the adhesive strength and hardness of silver paste paint film were effectively improved by increasing the curing temperature. The optimal overall performance of the conductive silver pastes was achieved at the curing temperature of 160 °C. Therefore, this work can provide a new route for preparing conductive silver pastes with high performances.


Assuntos
Nanopartículas Metálicas , Nanofios , Compostos Orgânicos Voláteis , Prata , Condutividade Elétrica
5.
Small ; 15(50): e1904882, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31713981

RESUMO

Integrating the defect engineering and conductivity promotion represents a promising way to improve the performance of CO2 electrochemical reduction. Herein, the hybridized composite of defective SnS2 nanosheets and Ag nanowires is developed as an efficient catalyst for the production of formate and syngas toward CO2 electrochemical reduction. The Schottky barrier in Ag-SnS2 hybrid nanosheets is negligible due to the similar Fermi level of SnS2 nanosheets and Ag nanowires. Accordingly, the free electrons of Ag nanowires participate in the electronic transport of SnS2 nanosheets, and thus give rise to a 5.5-fold larger carrier density of Ag-SnS2 hybrid nanosheets than that of SnS2 nanosheets. In CO2 electrochemical reduction, the Ag-SnS2 hybrid nanosheets display 38.8 mA cm-2 of geometrical current density at -1.0 V vs reversible hydrogen electrode, including 23.3 mA cm-2 for formate and 15.5 mA cm-2 for syngas with the CO/H2 ratio of 1:1. A mechanistic study reveals that the abundant defect sites and carrier density not only promote the conductivity of the electrocatalyst, but also increase the binding strength for CO2 , which account for the efficient CO2 reduction.

6.
Angew Chem Int Ed Engl ; 58(51): 18627-18633, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31621994

RESUMO

Galvanic replacement is a versatile approach to prepare hollow nanostructures with controllable morphology and elemental composition. The primary issue is to identify its fundamental mechanism. In this study, in situ liquid cell transmission electron microscopy was employed to monitor the dynamic reaction process and to explore the mechanism of galvanic replacement. The detailed reaction process was revealed based on in situ experiments in which small Au particles first appeared around Ag nanowires; they coalesced, grew, and adhered to Ag nanowires. After that, small pits grew from the edge of Ag nanowires to form tubular structures, and then extended along the Ag nanowires to obtain hollowed structures. All of our experimental observations from the viewpoint of electron microscopy, combined with DFT calculations, contribute towards an in-depth understanding of the galvanic replacement reaction process and the design of new materials with hollow structures.

7.
Small ; 14(44): e1802260, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30589512

RESUMO

The development of flexible chemiresistors is imperative for real-time monitoring of air quality and/or human physical conditions without space constraints. However, critical challenges such as poor sensing characteristics, vulnerability under toxic chemicals, and weak reliability hinder their practical use. In this work, for the first time, an ultrasensitive flexible sensing platform is reported by assembling Pt loaded thin-layered (≈10 nm) SnO2 nanosheets (Pt-SnO2 NSs) based 2D sensing layers on Ag nanowires embedded glass-fabric reinforced vinyl-phenyl siloxane hybrid composite substrate (AgNW-GFRVPH film) as a heater. The thermally stable AgNW-GFRVPH film based heater is fabricated by free radical polymerization of vinyl groups in vinyl-phenyl oligosiloxane and phenyltris(dimethylvinylsiloxy)silane with Ag NW and glass-fabric, showing outstanding heat generation (≈200 °C), high dimensional stability (13 ppm °C-1), and good thermal stability (≈350 °C). The Pt-SnO2 NSs, which are synthesized by calcination of Sn precursor coated graphene oxide (GO) sheets and subsequent Pt functionalization, exhibit high mechanical flexibility and superior response (Rair/Rgas = 4.84) to 1 ppm level dimethyl sulfide. Taking these advantages, GO-templated oxide NSs combined with a highly stable AgNW-GFRVPH film heater exhibits the best dimethyl sulfide sensing performance compared to state-of-the-art flexible chemiresistors, enabling them as a superior flexible gas sensing platform.

8.
Small ; 13(21)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28387474

RESUMO

A "Polyol" method has granted low-cost and facile process-controllability for silver-nanowire (Ag-NW) synthesis. Although homogenous and heterogeneous nucleation and growth during Ag-NW synthesis are possible using polyol methods, heterogeneous nucleation and growth of Ag NW guarantees highly selective growth of nanostructures using silver chloride (AgCl) seeds, which provides a stable source of chloride ions (Cl-) and thermodynamic reversibility. In this paper, a microdroplet has been adopted to synthesize uniform AgCl seeds with different diameter that are used for seed-mediated Ag-NW synthesis. The concentration of two precursors (AgNO3 and NaCl) in the droplets is modulated to produce different sizes of AgCl seeds, which determines the diameter and length of Ag NWs. The process of the seed-mediated growth of Ag NWs has been monitored by observing the peak shift in the time-resolved UV-vis extinction spectrum. Furthermore, the distinct plasmonic property of Ag NWs for transverse and longitudinal localized-surface-plasmon-resonance (LSPR)-mediated fluorescence enhancement is utilized. The high aspect ratio and sharp tips work as simple antennas that induce the enhanced fluorescence emission intensity of a fluorophore, which can be applied in the fields of biological tissue imaging and therapy.

9.
Small ; 12(42): 5826-5835, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27626614

RESUMO

Optically reduced graphene oxide (ORGO) sheets are successfully integrated on silver nanowire (Ag NW)-embedded transparent and flexible substrate. As a heating element, Ag NWs are embedded in a colorless polyimide (CPI) film by covering Ag NW networks using polyamic acid and subsequent imidization. Graphene oxide dispersed aqueous solution is drop-coated on the Ag NW-embedded CPI (Ag NW-CPI) film and directly irradiated by intense pulsed light to obtain ORGO sheets. The heat generation property of Ag NW-CPI film is investigated by applying DC voltage, which demonstrates unprecedentedly reliable and stable characteristics even in dynamic bending condition. To demonstrate the potential application in wearable chemical sensors, NO2 sensing characteristic of ORGO is investigated with respect to the different heating temperature (22.7-71.7 °C) of Ag NW-CPI film. The result reveals that the ORGO sheets exhibit high sensitivity of 2.69% with reversible response/recovery sensing properties and minimal deviation of baseline resistance of around 1% toward NO2 molecules when the temperature of Ag NW-CPI film is 71.7 °C. This work first demonstrates the improved reversible NO2 sensing properties of ORGO sheets on flexible and transparent Ag NW-CPI film assisted by Ag NW heating networks.

10.
Small ; 10(16): 3397-404, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-24789010

RESUMO

Deformation behavior of the Ag nanowire flexible transparent electrode under bending strain is studied and results in a novel approach for highly reliable Ag nanowire network with mechanically welded junctions. Bending fatigue tests up to 500,000 cycles are used to evaluate the in situ resistance change while imposing fixed, uniform bending strain. In the initial stages of bending cycles, the thermally annealed Ag nanowire networks show a reduction in fractional resistance followed by a transient and steady-state increase at later stages of cycling. SEM analysis reveals that the initial reduction in resistance is caused by mechanical welding as a result of applied bending strain, and the increase in resistance at later stages of cycling is determined to be due to the failure at the thermally locked-in junctions. Based on the observations from this study, a new methodology for highly reliable Ag nanowire network is proposed: formation of Ag nanowire networks with no prior thermal annealing but localized junction formation through simple application of mechanical bending strain. The non-annealed, mechanically welded Ag nanowire network shows significantly enhanced cyclic reliability with essentially 0% increase in resistance due to effective formation of localized wire-to-wire contact.

11.
Nanomaterials (Basel) ; 14(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38334540

RESUMO

In the present work, an insight on the morpho/structural properties of semitransparent organic devices for buildings' integrated photovoltaics is presented, and issues related to interface and bulk stability are addressed. The organic photovoltaic (OPV) cells under investigation are characterized by a blend of PM6:Y6 as a photo-active layer, a ZnO ETL (electron transporting layer), a HTL (hole transporting layer) of HTL-X and a transparent electrode composed by Ag nanowires (AgNWs). The devices' active nanomaterials, processed as thin films, and their mutual nanoscale interfaces are investigated by a combination of in situ Energy Dispersive X-ray Reflectometry (EDXR) and ex situ Atomic Force Microscopy (AFM), X-ray Diffraction (XRD) and micro-Raman spectroscopy. In order to discriminate among diverse concomitant aging pathways potentially occurring upon working conditions, the effects of different stress factors were investigated: light and temperature. Evidence is gained of an essential structural stability, although an increased roughness at the ZnO/PM6:Y6 interface is deduced by EDXR measurements. On the contrary, an overall stability of the system subjected to thermal stress in the dark was observed, which is a clear indication of the photo-induced origin of the observed degradation phenomenon. Micro-Raman spectroscopy brings light on the origin of such effect, evidencing a photo-oxidation process of the active material in the device, using hygroscopic organic HTL, during continuous illumination in ambient moisture conditions. The process may be also triggered by a photocatalytic role of the ZnO layer. Therefore, an alternative configuration is proposed, where the hygroscopic HTL-X is replaced by the inorganic compound MoOx. The results show that such alternative configuration is stable under light stress (solar simulator), suggesting that the use of Molybdenum Oxide, limiting the photo-oxidation of the bulk PM6:Y6 active material, can prevent the cell from degradation.

12.
J Colloid Interface Sci ; 679(Pt A): 1231-1241, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39426087

RESUMO

The practical application of aqueous zinc-ion batteries (AZBs) as attractive energy storage devices is severely hampered by the uncontrollable zinc dendrite growth on the metal anode. Here, a lightweight and flexible free-standing membrane of MXene/Ag nanowires (AgNWs) was synthesized via vacuum filtration to support the zinc anode. The 3D cross-linked network structure provides ample space for densely packed zinc electrodeposition. Zincophilic AgNWs that exhibit a low lattice plane mismatch with zinc lower the nucleation barrier for zinc, inducing uniform nucleation and lateral growth of zinc on the substrate. In addition, the 3D network framework effectively reduces the local current density and area capacity of the anode, creating a uniform electric field that is not conducive to zinc dendrite formation. Consequently, the highly reversible Zn@MXene/AgNWs composite anode exhibits long cycle stability of 1000 h at 2.0 mA cm-2, 1.0 mAh cm-2 in the symmetrical battery. The full battery assembled with a sodium vanadate (NVO) cathode demonstrates excellent rate performance and long cycle life (2000 cycles at 5.0 A/g). The design of zincophilic hosts with high lattice plane matching provides a promising strategy for realizing dendrite-free zinc anodes for AZBs.

13.
Nanomaterials (Basel) ; 13(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36903671

RESUMO

With the increase in heat power density in modern integrating electronics, thermal interface materials (TIM) that can efficiently fill the gaps between the heat source and heat sinks and enhance heat dissipation are urgently needed owing to their high thermal conductivity and excellent mechanical durability. Among all the emerged TIMs, graphene-based TIMs have attracted increasing attention because of the ultrahigh intrinsic thermal conductivity of graphene nanosheets. Despite extensive efforts, developing high-performance graphene-based papers with high through-plane thermal conductivity remains challenging despite their high in-plane thermal conductivity. In this study, a novel strategy for enhancing the through-plane thermal conductivity of graphene papers by in situ depositing AgNWs on graphene sheets (IGAP) was proposed, which could boost the through-plane thermal conductivity of the graphene paper up to 7.48 W m-1 K-1 under packaging conditions. In the TIM performance test under actual and simulated operating conditions, our IGAP exhibits strongly enhanced heat dissipation performance compared to the commercial thermal pads. We envision that our IGAP as a TIM has great potential for boosting the development of next-generation integrating circuit electronics.

14.
J Colloid Interface Sci ; 630(Pt A): 484-493, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36265349

RESUMO

Particular matter (PM), oily wastewater, and microorganisms (e.g., bacteria) have caused serious environmental, health, and safety issues. However, the development of multifunctional filtration materials to address these problems remains a great challenge. Here, we present a series of gradient structured air filters by simply spray coating poly(vinyl alcohol-co-ethylene) (PVA-co-PE) nanofibers on nylon mesh, followed by silver nanowires (AgNWs). Interestingly, it is found that the ANF-6 air filter is an anisotropic Janus membrane with asymmetric wettability and translucency. The as-prepared ANF-6 air filter exhibits excellent water vapor transmission rate (4447.92 ± 184.78 g/(m2. d)), PM filtration (96.42 ± 0.64 % for PM0.3), photothermal (79.6 °C under 1sun in 150 s), thermal insulation, antibacterial, and oil water separation. Additionally, the obtained ANF-6 air filter was impregnated with carbon black (CB) dispersion and served as flexible pressure sensors to monitor human respiration rate (17 times/min) and wrist pulse rate (80 times/min). The gradient structured PVA-co-PE nanofibers and AgNWs network provides excellent air filtration, oil water separation, and sensitivity performance for the sensors. These results provide a new scheme for designing multifunctional filtration materials and wearable pressure sensors in the application of air filtration, oil water separation, and wearable electronics for monitoring human health.


Assuntos
Filtros de Ar , Nanofibras , Nanofios , Dispositivos Eletrônicos Vestíveis , Humanos , Prata
15.
Nanomaterials (Basel) ; 13(24)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38133065

RESUMO

To develop highly sensitive surface-enhanced Raman spectroscopy (SERS) films, various types of aggregated Ag nanowire (NW) and nanoparticle (NP) complex structures were fabricated using anodic aluminum oxide (AAO) templates and thermal evaporation. Aggregated AgNW structures with numerous tapered nanogaps were fabricated via Ag deposition on aggregated thin alumina nanowires of different lengths. AgNP complex structures were obtained by collapsing vertically aligned thin alumina nanowires 1 µm in length and depositing AgNPs on their tops and sides using surface tension during ethanol drying after functionalization. The Raman signal enhancement factors (EFs) of the samples were evaluated by comparing the SERS signal of the thiophenol (TP) self-assembled monolayer (SAM) on the nanostructures with the Raman signal of neat TP. EFs as high as ~2.3 × 107 were obtained for the optimized aggregated AgNW structure (NW length of 1 µm) and ~3.5 × 107 for the optimized AgNP complex structure. The large EF of the AgNP complex film is attributed mainly to the AgNPs dispersed in three dimensions on the sides of the thin alumina nanowires, strongly implying some important, relevant physics yet to be discovered and also a very promising nanostructure scheme for developing ultrahighly sensitive SERS films with EF > 108.

16.
ACS Nano ; 17(23): 24374-24383, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38039187

RESUMO

Organic vertical transistors are promising device with benefits such as high operation speed, high saturation current density, and low-voltage operation owing to their short channel length. However, a short channel length leads to a high off-current, which is undesirable because it affects the on-off ratio and power consumption. This study presents a breakthrough in the development of high-performance organic Schottky barrier transistors (OSBTs) with a low off-current by utilizing a near-ideal source electrode with a web-like Ag nanowire (AgNW) morphology. This is achieved by employing a humidity- and surface-tension-mediated liquid-film rupture technique, which facilitates the formation of well-connected AgNW networks with large pores between them. Therefore, the gate electric field is effectively transmitted to the semiconductor layer. Also, the minimized surface area of the AgNWs causes complete suppression of the off-current and induces ideal saturation of the OSBT output characteristics. p- and n-type OSBTs exhibit off-currents in the picoampere range with on/off ratios exceeding 106 and 105, respectively. Furthermore, complementary inverters are prepared using an aryl azide cross-linker for patterning, with a gain of >16. This study represents a significant milestone in the development of high-performance organic vertical transistors and verifies their applicability in organic electronic circuitry.

17.
ACS Appl Mater Interfaces ; 15(3): 4835-4844, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36642925

RESUMO

Three-dimensional (3D) woven Ag nanowire (AgNW) grids have great potential for enhancing the mechanical stabilities, conductivity, and transmittance of flexible transparent electrodes (FTEs). However, it is a great challenge to control the formation of 3D woven AgNW grids on various substrates, especially the poly(dimethylsiloxane) (PDMS) substrate. This work presents a microtransfer-printing method for preparing a high-wettability poly(dimethylsiloxane) (PDMS) substrate to control the formation of 3D woven AgNW grids. The as-prepared PDMS substrate shows a high wettability performance. The surface structures of the PDMS substrate can control the sharp shrinkage of the ink membrane to give rise to a uniform liquid membrane evaporation behavior, which is the key factor for preparing a uniform 3D woven nanowire network. A thin uniform 3D woven AgNW network with a low sheet resistance of 24.3 Ω/□ and high transmittance of 92% was coated on the PDMS substrate. The networks directly coated the surface of the replicated PDMS, which simplified the peeling process and protected the networks from peeling strain and mechanical deformations. Moreover, the increment of resistance retained a small value (∼5%) when bending cycles reached 9,000. An alternating current electroluminescent (ACEL) device was prepared, and the uniform electroluminescence implies that a defect-free electrode has been fabricated. These results indicate that the as-prepared FTEs have excellent mechanical performance and great potential for flexible optoelectronic applications.

18.
Nanomaterials (Basel) ; 13(4)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36839076

RESUMO

The traditional Ag nanowire preparation means that it cannot meet the demanding requirements of photoelectrochemical devices due to the undesirable conductivity, difficulty in compounding, and poor heat resistance. Here, we prepared an Ag nanonetwork with superior properties using a special template method based on electrospinning technology. The transparent conductive films based on Ag nanonetworks have good transmittance in a wide range from ultraviolet to visible. It is important that the films have high operability and are easy to be compounded with other materials. After compounding with high-melting-point W metal, the heat-resistance temperature of the W/Ag composite transparent conductive films is increased by 100 °C to 460 °C, and the light transmission and electrical conductivity of the films are not significantly affected. All experimental phenomena in the study are analyzed theoretically. This research can provide an important idea for the metal nanowire electrode, which is difficult to be applied to the photoelectrochemical devices.

19.
Polymers (Basel) ; 15(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37177226

RESUMO

Composites based on an L-rich poly(lactic acid) (PLLA) and MCM-41, either neat or modified with a silver (MCM-41@Ag), are achieved by solvent casting, being next processed by compression molding. Ag is mainly embedded as nanowires within the hybrid MCM-41@Ag particles, enabling its antimicrobial character. In these composites, the PLLA thermal stability, nucleation efficiency, and mechanical response are dependent on the MCM-41 nature and, to a lesser extent, on its content. Thus, differences in transitions of the PLLA matrix are noticed during cooling at 10 °C/min and in the subsequent heating when composites with neat or modified MCM-41 are compared. A very remarkable nucleation effect is played by pristine MCM-41, being inferior when MCM-41@Ag is incorporated into the PLLA. Wide angle X-ray scattering (WAXS) measurements using synchrotron radiation and performed under variable-temperature conditions in the composites containing MCM-41@Ag indicate that during cold crystallization, the disordered α' polymorph is initially formed, but it rapidly transforms into ordered α crystals. A long spacing peak, clearly seen in pure PLLA, appears as a small shoulder in PLLAMCM@Ag4 and is undetectable in PLLAMCM@Ag9 and PLLAMCM@Ag20. Furthermore, an increase in MH with the silica content is found in the two sets of composites, the higher MH values being observed in the family of PLLA and MCM-41@Ag. Finally, remarkable antimicrobial features are noticeable in the composites with MCM-41@Ag since this modified silica transfers its biocidal characteristics into the PLLA composites.

20.
Adv Mater ; 35(47): e2304667, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37730093

RESUMO

Aqueous zinc-ion batteries (AZIBs) offer promising prospects for large-scale energy storage due to their inherent abundance and safety features. However, the growth of zinc dendrites remains a primary obstacle to the practical industrialization of AZIBs, especially under harsh conditions of high current densities and elevated temperatures. To address this issue, a Janus separator with an exceptionally ultrathin thickness of 29 µm is developed. This Janus separator features the bacterial cellulose (BC) layer on one side and Ag nanowires/bacterial cellulose (AgNWs/BC) layer on the other side. High zincophilic property and excellent electric/thermal conductivity of AgNWs make them ideal for serving as an ion pump to accelerate Zn2+ transport in the electrolyte, resulting in greatly improved Zn2+ conductivity, deposition of homogeneous Zn nuclei, and dendrite-free Zn. Consequently, the Zn||Zn symmetrical cells with the Janus separator exhibit a stable cycle life of over 1000 h under 80 mA cm-2 and are sustained for over 600 h at 10 mA cm-2 under 50 °C. Further, the Janus separator enables excellent cycling stability in AZIBs, aqueous zinc-ion capacitors (AZICs), and scaled-up flexible soft-packaged batteries. This study demonstrates the potential of functional separators in promoting the application of aqueous zinc batteries, particularly under harsh conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA