RESUMO
BACKGROUND: Intensive investigations have identified a collection of microRNAs (miRNAs) and their functional machineries in cytoplasm. However, a comprehensive view of miRNAs and mRNAs in cytoplasm and nucleus has not been explored. This study aims to reveal the mechanisms of miRNA-RNA interactions in nucleus and cytoplasm. METHODS: In this study, the miRNAs and their target mRNAs in the Argonaute2 (Ago2) complex of nucleus and cytoplasm of gastric cancer cells were characterized using high-throughput sequencing of RNAs isolated by crosslinking immunoprecipitation (HITS-CLIP). Then, the selected miRNAs were verified by Northern blot. The target mRNAs in the Argonaute2 (Ago2) complex of nucleus and cytoplasm of gastric cancer cells were analyzed through Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) analysis. RESULTS: The results revealed that there were 243 miRNAs and 265 miRNAs in the Ago2 complexes of nucleus and cytoplasm, respectively. The majority of mature miRNAs existed in cytoplasm. The analysis of miRNA targetome from the Ago2 complexes indicated that a lot of mRNAs with high expression level existed in nucleus. The target genes of miRNAs in the Ago2 complexes of nucleus and cytoplasm played important roles in cell proliferation, cell differentiation, innate immune response and tumorigenesis. CONCLUSIONS: microRNA-mRNA interactions occur in nucleus and cytoplasm of gastric cancer cells. Therefore, our study demonstrated that miRNA-mRNA interactions not only took place in cytoplasm but also in nucleus.
Assuntos
Proteínas Argonautas/genética , Carcinogênese/genética , MicroRNAs/genética , Neoplasias Gástricas/genética , Diferenciação Celular/genética , Núcleo Celular/genética , Proliferação de Células/genética , Citoplasma/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunidade Inata/genética , Imunoprecipitação , RNA Mensageiro/genética , Neoplasias Gástricas/patologiaRESUMO
RNA interference (RNAi) has been widely adopted to repress specific gene expression and is easily achieved by designing small interfering RNAs (siRNAs) with perfect sequence complementarity to the intended target mRNAs. Although siRNAs direct Argonaute (Ago), a core component of the RNA-induced silencing complex (RISC), to recognize and silence target mRNAs, they also inevitably function as microRNAs (miRNAs) and suppress hundreds of off-targets. Such miRNA-like off-target repression is potentially detrimental, resulting in unwanted toxicity and phenotypes. Despite early recognition of the severity of miRNA-like off-target repression, this effect has often been overlooked because of difficulties in recognizing and avoiding off-targets. However, recent advances in genome-wide methods and knowledge of Ago-miRNA target interactions have set the stage for properly evaluating and controlling miRNA-like off-target repression. Here, we describe the intrinsic problems of miRNA-like off-target effects caused by canonical and noncanonical interactions. We particularly focus on various genome-wide approaches and chemical modifications for the evaluation and prevention of off-target repression to facilitate the use of RNAi with secured specificity.