Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Rep ; 49(7): 6135-6143, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35366177

RESUMO

BACKGROUND: The global rise in drug-resistant Mycobacterium tuberculosis (M.tb), and especially the significant prevalence of isoniazid (INH)-resistance constitute a significant challenge to global health. Therefore, the present study aimed to investigate mutations in prevalent gene loci-involved in INH-resistance phenotype-among M.tb clinical isolates from southwestern Iran. METHODS: Drug susceptibility testing (DST) was performed using the conventional proportional method on confirmed 6620 M.tb clinical isolates, and in total, 15 INH-resistant and 18 INH-susceptible isolates were included in the study. Fragments of six genetic loci most related to INH-resistance (katG, inhA promoter, furA, kasA, ndh, oxyR-ahpC intergenic region) were PCR-amplified and sequenced. Mutations were explored by pairwise alignment with the M.tb H37Rv genome. RESULTS: The analysis of gene loci revealed 13 distinct mutations in INH-resistant isolates. 60% (n = 9) of the INH-resistant isolates had mutations in katG, with codon 315 predominately (53.3%, n = 8). Mutation at InhA - 15 was found in 20% (n = 3) of resistant isolates. 26.7% (n = 4) of the INH-resistant isolates had kasA mutations, of which G269S substitution was the most common (20%, n = 3). The percentage of mutations in furA, oxyR-ahpC and ndh was 6.7% (n = 1), 46.7% (n = 7), and 20% (n = 3), respectively. Of the mutations detected in ndh and oxyR-ahpC, 5 were also observed in INH-susceptible isolates. This study revealed seven novel mutations, four of which were exclusively in resistant isolates. CONCLUSIONS: This study supports the usefulness of katG and inhA mutations as a predictive molecular marker for INH resistance. Co-detection of katG S315 and inhA-15 mutations identified 73.3% (11 out of 15 isolates) of INH-resistant isolates.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Antituberculosos/farmacologia , Proteínas de Bactérias/genética , Catalase/genética , Genes Bacterianos , Humanos , Irã (Geográfico) , Isoniazida/farmacologia , Testes de Sensibilidade Microbiana , Mutação/genética , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/genética
2.
Int J Mol Sci ; 21(12)2020 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-32545723

RESUMO

Protein folding often requires molecular chaperones and folding catalysts, such as peptidyl-prolyl cis/trans isomerases (PPIs). The Escherichia coli cytoplasm contains six well-known PPIs, although a requirement of their PPIase activity, the identity of their substrates and relative enzymatic contribution is unknown. Thus, strains lacking all periplasmic and one of the cytoplasmic PPIs were constructed. Measurement of their PPIase activity revealed that PpiB is the major source of PPIase activity in the cytoplasm. Furthermore, viable Δ6ppi strains could be constructed only on minimal medium in the temperature range of 30-37 °C, but not on rich medium. To address the molecular basis of essentiality of PPIs, proteins that aggregate in their absence were identified. Next, wild-type and putative active site variants of FkpB, FklB, PpiB and PpiC were purified and in pull-down experiments substrates specific to each of these PPIs identified, revealing an overlap of some substrates. Substrates of PpiC were validated by immunoprecipitations using extracts from wild-type and PpiC-H81A strains carrying a 3xFLAG-tag appended to the C-terminal end of the ppiC gene on the chromosome. Using isothermal titration calorimetry, RpoE, RseA, S2, and AhpC were established as FkpB substrates and PpiC's PPIase activity was shown to be required for interaction with AhpC.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Peptidilprolil Isomerase/química , Peptidilprolil Isomerase/metabolismo , Calorimetria , Citoplasma/enzimologia , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Modelos Moleculares , Mutação , Peptidilprolil Isomerase/genética , Dobramento de Proteína , Especificidade por Substrato
3.
J Cell Mol Med ; 23(1): 155-166, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30370662

RESUMO

Matriptase is an epithelia-specific membrane-anchored serine protease, and its dysregulation is highly related to the progression of a variety of cancers. Hepatocyte growth factor activator inhibitor-1 (HAI-1) inhibits matriptase activity through forming complex with activated matriptase. The balance of matriptase activation and matriptase/HAI-1 complex formation determines the intensity and duration of matriptase activity. 3-Cl-AHPC, 4-[3-(1-adamantyl)-4-hydroxyphenyl]-3-chlorocinnamic acid, is an adamantly substituted retinoid-related molecule and a ligand of retinoic acid receptor γ (RARγ). 3-Cl-AHPC is of strong anti-cancer effect but with elusive mechanisms. In our current study, we show that 3-Cl-AHPC time- and dose- dependently induces matriptase/HAI-1 complex formation, leading to the suppression of activated matriptase in cancer cells and tissues. Furthermore, 3-Cl-AHPC promotes matriptase shedding but without increasing the activity of shed matriptase. Moreover, 3-Cl-AHPC inhibits matriptase-mediated cleavage of pro-HGF through matriptase/HAI-1 complex induction, resulting in the suppression of pro-HGF-stimulated signalling and cell scattering. Although 3-Cl-AHPC binds to RARγ, its induction of matriptase/HAI-1 complex is not RARγ dependent. Together, our data demonstrates that 3-Cl-AHPC down-regulates matriptase activity through induction of matriptase/HAI-1 complex formation in a RARγ-independent manner, providing a mechanism of 3-Cl-AHPC anti-cancer activity and a new strategy to inhibit abnormal matriptase activity via matriptase/HAI-1 complex induction using small molecules.


Assuntos
Adamantano/análogos & derivados , Antineoplásicos/farmacologia , Cinamatos/farmacologia , Fator de Crescimento de Hepatócito/metabolismo , Precursores de Proteínas/metabolismo , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , Serina Endopeptidases/metabolismo , Adamantano/farmacologia , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Humanos , Masculino , Camundongos Nus , Complexos Multiproteicos/metabolismo , Proteínas Secretadas Inibidoras de Proteinases/genética , Receptores do Ácido Retinoico/metabolismo , Serina Endopeptidases/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor gama de Ácido Retinoico
4.
Antonie Van Leeuwenhoek ; 112(5): 809-814, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30467663

RESUMO

Inactivation of ahpC, encoding alkyl hydroperoxide reductase, rendered Stenotrophomonas maltophilia more resistant to H2O2; the phenotype was directly correlated with enhanced total catalase activity, resulting from an increased level of KatA catalase. Plasmid-borne expression of ahpC from pAhpCsm could complement all of the mutant phenotypes. Mutagenesis of the proposed AhpC peroxidactic and resolving cysteine residues to alanine (C47A and C166A) on the pAhpCsm plasmid diminished its ability to complement the ahpC mutant phenotypes, suggesting that the mutagenized ahpC was non-functional. As mutations commonly occur in bacteria living in hostile environment, our data suggest that point mutations in ahpC at codons required for the enzyme function (such as C47 and C166), the AhpC will be non-functional, leading to high resistance to the disinfectant H2O2.


Assuntos
Proteínas de Bactérias/genética , Desinfetantes/farmacologia , Peróxido de Hidrogênio/farmacologia , Peroxirredoxinas/genética , Stenotrophomonas maltophilia/efeitos dos fármacos , Stenotrophomonas maltophilia/enzimologia , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana , Regulação Bacteriana da Expressão Gênica , Inativação Gênica , Peroxirredoxinas/metabolismo , Stenotrophomonas maltophilia/genética
5.
Biochim Biophys Acta ; 1860(11 Pt A): 2576-2588, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27487031

RESUMO

The study explores the significance of peroxides in regulating the CO2- and N2-fixation capacities in Anabaena sp. PCC7120. To this end Anabaena strains were generated carrying an extra copy of ahpC (An+ahpC) or by deleting from their endogenous functional ahpC (AnΔahpC). AhpC levels were 2.2- to 6.0-fold higher in An+ahpC than in wild type. An+ahpC revealed 1.4- to 2-fold upregulation of photosystems I and II, nitrogenase, superoxide dismutase and catalase activities while same activities were 1.3- to 2.5-fold downregulated in the insertional mutant (AnΔahpC) compared to the wild type. Peroxide, superoxide and malondialdehyde contents were low in An+ahpC and high in AnΔahpC. Growth was inhibited in AnΔahpC by approximately 40-60% compared to a 33-40% enhanced growth in An+ahpC under selected stresses. Most interestingly, heterocyst frequency was increased in An+ahpC. In order to address transcriptional and posttranscriptional effects, transcripts of genes including groEL, fld, kat, gor, gst, dps, bfr, tf, sodA, dnaK, prx, uspA, pcs and apx were quantified and found to be increased 1.33- to 7.70-fold in unstressed and 1.76- to 13.80-fold in stressed An+ahpC. In a converse manner, they were downregulated by 1.20- to 7.50-fold in unstressed and 1.23 to 10.20-fold in stressed AnΔahpC. It is concluded that the level of AhpC controls a major set of metabolic and developmental genes in normal and stress conditions and thus likely is in the core of the redox regulatory system of Anabaena.


Assuntos
Anabaena/genética , Regulação Bacteriana da Expressão Gênica , Fixação de Nitrogênio , Estresse Oxidativo , Anabaena/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Ativação Transcricional , Regulação para Cima
6.
Infect Immun ; 85(4)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28138024

RESUMO

Bacteria have developed capacities to deal with different stresses and adapt to different environmental niches. The human pathogen Vibrio cholerae, the causative agent of the severe diarrheal disease cholera, utilizes the transcriptional regulator OxyR to activate genes related to oxidative stress resistance, including peroxiredoxin PrxA, in response to hydrogen peroxide. In this study, we identified another OxyR homolog in V. cholerae, which we named OxyR2, and we renamed the previous OxyR OxyR1. We found that OxyR2 is required to activate its divergently transcribed gene ahpC, encoding an alkylhydroperoxide reductase, independently of H2O2 A conserved cysteine residue in OxyR2 is critical for this function. Mutation of either oxyR2 or ahpC rendered V. cholerae more resistant to H2O2 RNA sequencing analyses indicated that OxyR1-activated oxidative stress-resistant genes were highly expressed in oxyR2 mutants even in the absence of H2O2 Further genetic analyses suggest that OxyR2-activated AhpC modulates OxyR1 activity by maintaining low intracellular concentrations of H2O2 Furthermore, we showed that ΔoxyR2 and ΔahpC mutants were less fit when anaerobically grown bacteria were exposed to low levels of H2O2 or incubated in seawater. These results suggest that OxyR2 and AhpC play important roles in the V. cholerae oxidative stress response.


Assuntos
Proteínas de Bactérias/metabolismo , Estresse Oxidativo , Fatores de Transcrição/metabolismo , Vibrio cholerae/fisiologia , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cólera/microbiologia , Regulação Bacteriana da Expressão Gênica , Ordem dos Genes , Camundongos , Viabilidade Microbiana/genética , Oxirredução , Espécies Reativas de Oxigênio , Deleção de Sequência , Fatores de Transcrição/química
7.
Can J Microbiol ; 61(5): 343-50, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25825971

RESUMO

The exposure of Xanthomonas campestris pv. campestris to sublethal concentrations of a sodium hypochlorite (NaOCl) solution induced the expression of genes that encode peroxide scavenging enzymes within the OxyR and OhrR regulons. Sensitivity testing in various X. campestris mutants indicated that oxyR, katA, katG, ahpC, and ohr contributed to protection against NaOCl killing. The pretreatment of X. campestris cultures with oxidants, such as hydrogen peroxide (H2O2), t-butyl hydroperoxide, and the superoxide generator menadione, protected the bacteria from lethal concentrations of NaOCl in an OxyR-dependent manner. Treating the bacteria with a low concentration of NaOCl resulted in the adaptive protection from NaOCl killing and also provided cross-protection from H2O2 killing. Taken together, the results suggest that the toxicity of NaOCl is partially mediated by the generation of peroxides and other reactive oxygen species that are removed by primary peroxide scavenging enzymes, such as catalases and AhpC, as a part of an overall strategy that protects the bacteria from the lethal effects of NaOCl.


Assuntos
Peróxidos/metabolismo , Regulon , Hipoclorito de Sódio/farmacologia , Xanthomonas campestris/efeitos dos fármacos , Catalase/metabolismo , Regulação Bacteriana da Expressão Gênica , Peróxido de Hidrogênio/farmacologia , Xanthomonas campestris/genética , Xanthomonas campestris/metabolismo
8.
Biosci Biotechnol Biochem ; 78(9): 1619-22, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25209512

RESUMO

Ferriperoxin is a novel peroxidase essential for aerobiosis of Hydrogenobacter thermophilus. Although the ferriperoxin-deficient mutant (Δfpx) was unable to grow aerobically, a suppressor mutant capable of aerobic growth was obtained after long aerobic cultivation. The alkyl hydroperoxide reductase gene was significantly upregulated in the suppressor mutant, indicating that the enzyme counteracts oxidative stress in the absence of ferriperoxin.


Assuntos
Bactérias/crescimento & desenvolvimento , Estresse Oxidativo , Peroxirredoxinas/biossíntese , Aclimatação , Adaptação Fisiológica/genética , Aerobiose , Bactérias/enzimologia , Regulação Bacteriana da Expressão Gênica , Peróxido de Hidrogênio
9.
Clin Neuroradiol ; 33(1): 129-136, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35819477

RESUMO

INTRODUCTION: Bifurcation aneurysms represent an ongoing endovascular challenge with a variety of techniques and devices designed to address them. We present our multicenter series of the pCONUS2 and pCONUS2 HPC devices when treating bifurcation aneurysms. METHODS: We performed a retrospective review of our prospectively maintained databases at 3 tertiary neurointerventional centers to identify all patients who underwent coil embolization with the pCONUS2 or pCONUS2 HPC device between February 2015 and August 2021. We recorded baseline demographics, aneurysm data, complications, immediate and delayed angiographic results. RESULTS: We identified 55 patients with 56 aneurysms, median age 63 years (range 42-78 years), 67.3% female (n = 37). The commonest aneurysm location was the MCA bifurcation (n = 40, 71.4%). Average dome height was 8.9 ± 4.2 mm (range 3.2-21.5 mm), average neck width 6.4 ± 2.5 mm (range 2.6-14 mm), and average aspect ratio 1.3 ± 0.6 (range 0.5-3.3). The pCONUS2 was used in 64.3% and the pCONUS2 HPC in 35.7%. The procedural technical success rate was 98.2%. Intraoperative complications occurred in 5 cases (8.9%), 4 of which were related to the coils with partial thrombus formation on the pCONUS2 HPC seen in 1 case that was resolved with heparin. In relation to the procedure and treatment of the aneurysm the overall permanent morbidity was 1.8% (n = 1/55) and mortality 0%. Delayed angiographic follow-up (48 aneurysms) at median 12 months postprocedure (range 3-36 months) demonstrated adequate occlusion of 83.4% of aneurysms. CONCLUSION: The pCONUS2 and pCONUS2 HPC devices carry a high technical success rate, low complication and retreatment rate, and good rates of adequate occlusion. Larger prospective confirmatory studies are required.


Assuntos
Embolização Terapêutica , Procedimentos Endovasculares , Aneurisma Intracraniano , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Masculino , Estudos Retrospectivos , Resultado do Tratamento , Estudos Prospectivos , Aneurisma Intracraniano/terapia , Aneurisma Intracraniano/cirurgia , Retratamento , Embolização Terapêutica/métodos , Procedimentos Endovasculares/métodos , Stents
10.
Pathog Glob Health ; 116(1): 22-29, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34086544

RESUMO

Tuberculosis (TB) is a global threat due to the emergence and spread of drug-resistant Mycobacterium tuberculosis (MTB). Isoniazid (INH) is the main antibiotic used for prevention and treatment of TB. Evidence shows that accumulated mutations can produce INH resistant (INHR) strains, resulting in the progression of multidrug-resistant (MDR) TB. Since point mutations in katG gene, inhA gene, and oxyR-ahpC region correlated with the INH resistance, in this study, we aimed to identify mutations in these three genes in INHR and MDR clinical isolates of MTB by Sanger DNA sequencing analysis. Thirty-three out of 438 isolates were resistant, including 66.7% INHR and 30.3% MDR isolates. In the katG gene, 68.2% INHR isolates had non-synonymous point mutations, mainly R463L (63.6%), and non-synonymous point mutation KatG L587P was seen in one of the MDR isolate. A novel silent substitution L649L was identified in the inhA gene of the MDR isolates. The oxyR-ahpC intergenic region g-88a common mutations (63.6%) in INHR and two distinct novel mutations were found at positions -76 and -77 of the oxyR-ahpC intergenic region. The coexistence of katG non-codon 315 with oxyR-ahpC intergenic region mutations was highly frequent in INHR 59.1% and MDR isolates 70%. Since mutations of all three genes 95.5% lead to the detection of INHR, they might be useful for molecular detection. Our results indicated the continuous evolution and region-specific prevalence of INH resistance. Overall, identification of new mutations in INH resistance can improve the available strategies for diagnosis and control of TB.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Proteínas de Bactérias/genética , DNA Bacteriano/genética , DNA Intergênico , Humanos , Isoniazida/farmacologia , Isoniazida/uso terapêutico , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/genética , Tuberculose/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia
11.
Antioxidants (Basel) ; 11(9)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36139867

RESUMO

Staphylococcus aureus has to cope with oxidative stress during infections. In this study, S. aureus was found to be resistant to 100 mM H2O2 during aerobic growth. While KatA was essential for this high aerobic H2O2 resistance, the peroxiredoxin AhpC contributed to detoxification of 0.4 mM H2O2 in the absence of KatA. In addition, the peroxiredoxins AhpC, Tpx and Bcp were found to be required for detoxification of cumene hydroperoxide (CHP). The high H2O2 tolerance of aerobic S. aureus cells was associated with priming by endogenous H2O2 levels, which was supported by an oxidative shift of the bacillithiol redox potential to -291 mV compared to -310 mV in microaerophilic cells. In contrast, S. aureus could be primed by sub-lethal doses of 100 µM H2O2 during microaerophilic growth to acquire an improved resistance towards the otherwise lethal triggering stimulus of 10 mM H2O2. This microaerophilic priming was dependent on increased KatA activity, whereas aerobic cells showed constitutive high KatA activity. Thus, KatA contributes to the high H2O2 resistance of aerobic cells and to microaerophilic H2O2 priming in order to survive the subsequent lethal triggering doses of H2O2, allowing the adaptation of S. aureus under infections to different oxygen environments.

12.
Front Microbiol ; 12: 626874, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025596

RESUMO

To colonize in the digestive tract of animals and humans, Yersinia pseudotuberculosis has to deal with reactive oxygen species (ROS) produced by host cells and microbiota. However, an understanding of the ROS-scavenging systems and their regulation in this bacterium remains largely elusive. In this study, we identified OxyR as the master transcriptional regulator mediating cellular responses to hydrogen peroxide (H2O2) in Y. pseudotuberculosis through genomics and transcriptomics analyses. OxyR activates transcription of diverse genes, especially the core members of its regulon, including those encoding catalases, peroxidases, and thiol reductases. The data also suggest that sulfur species and manganese may play a particular role in the oxidative stress response of Y. pseudotuberculosis. Among the three H2O2-scavenging systems in Y. pseudotuberculosis, catalase/peroxidase KatE functions as the primary scavenger for high levels of H2O2; NADH peroxidase alkyl hydroperoxide reductase (AhpR) and catalase KatG together are responsible for removing low levels of H2O2. The simultaneous loss of both AhpC (the peroxidatic component of AhpR) and KatG results in activation of OxyR. Moreover, we found that AhpC, unlike its well-characterized Escherichia coli counterpart, has little effect on protecting cells against toxicity of organic peroxides. These findings provide not only novel insights into the structural and functional diversity of bacterial H2O2-scavenging systems but also a basic understanding of how Y. pseudotuberculosis copes with oxidative stress.

13.
J Gen Appl Microbiol ; 67(2): 59-66, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-33518552

RESUMO

Pantoea agglomerans YS19 is a dominant endophytic bacterium isolated from rice, which is capable of promoting host plant growth by nitrogen-fixing and phytohormone secreting. We previously found that the cytidine repressor (CytR) protein conducts the regulation of indole signal in YS19. Here, we compared the whole-cell protein of the wild type YS19 and the ΔcytR mutant and subsequently identified one differential protein as alkyl hydroperoxide reductase subunit C related to oxidative stress and sulfur starvation tolerance. It was tested that cytR had a positive effect on the survival of YS19 under the oxidative stress and sulfur starvation conditions and this effect was inhibited by indole. To further understand the functional mode of indole in this regulation, we cloned the cytR promoter region (PcytR) of YS19 and tested the effect of indole on PcytR using gfp as a reporter gene. It was found that PcytR can sense indole and significantly inhibit the expression of the downstream gene. This study provided a deeper understanding of the multiple function of cytR and expanded a new research direction of how indole participates in gene regulation.


Assuntos
Proteínas de Bactérias/metabolismo , Estresse Oxidativo/fisiologia , Pantoea/fisiologia , Proteínas Repressoras/metabolismo , Enxofre/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Indóis/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Mutação , Estresse Oxidativo/efeitos dos fármacos , Peroxirredoxinas/genética , Regiões Promotoras Genéticas , Proteínas Repressoras/genética
14.
Redox Biol ; 46: 102075, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34315109

RESUMO

Pseudomonas aeruginosa is an opportunistic bacterium in patients with cystic fibrosis and hospital acquired infections. It presents a plethora of virulence factors and antioxidant enzymes that help to subvert the immune system. In this study, we identified the 2-Cys peroxiredoxin, alkyl-hydroperoxide reductase C1 (AhpC1), as a relevant scavenger of oxidants generated during inflammatory oxidative burst and a mechanism of P. aeruginosa (PA14) escaping from killing. Deletion of AhpC1 led to a higher sensitivity to hypochlorous acid (HOCl, IC50 3.2 ± 0.3 versus 19.1 ± 0.2 µM), hydrogen peroxide (IC50 91.2 ± 0.3 versus 496.5 ± 6.4 µM) and the organic peroxide urate hydroperoxide. ΔahpC1 strain was more sensitive to the killing by isolated neutrophils and less virulent in a mice model of infection. All mice intranasally instilled with ΔahpC1 survived as long as they were monitored (15 days), whereas 100% wild-type and ΔahpC1 complemented with ahpC1 gene (ΔahpC1 attB:ahpC1) died within 3 days. A significantly lower number of colonies was detected in the lung and spleen of ΔahpC1-infected mice. Total leucocytes, neutrophils, myeloperoxidase activity, pro-inflammatory cytokines, nitrite production and lipid peroxidation were much lower in lungs or bronchoalveolar liquid of mice infected with ΔahpC1. Purified AhpC neutralized the inflammatory organic peroxide, urate hydroperoxide, at a rate constant of 2.3 ± 0.1 × 106 M-1s-1, and only the ΔahpC1 strain was sensitive to this oxidant. Incubation of neutrophils with uric acid, the urate hydroperoxide precursor, impaired neutrophil killing of wild-type but improved the killing of ΔahpC1. Hyperuricemic mice presented higher levels of serum cytokines and succumbed much faster to PA14 infection when compared to normouricemic mice. In summary, ΔahpC1 PA14 presented a lower virulence, which was attributed to a poorer ability to neutralize the oxidants generated by inflammatory oxidative burst, leading to a more efficient killing by the host. The enzyme is particularly relevant in detoxifying the newly reported inflammatory organic peroxide, urate hydroperoxide.


Assuntos
Pseudomonas aeruginosa , Explosão Respiratória , Animais , Humanos , Camundongos , Oxidantes , Peroxirredoxinas/genética , Virulência
15.
Front Microbiol ; 12: 773697, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095793

RESUMO

Campylobacter jejuni (C. jejuni) is one of the major pathogens contributing to the enteritis in humans. Infection can lead to numerous complications, including but not limited to Guillain-Barre syndrome, reactive arthritis, and Reiter's syndrome. Over the past two decades, joint efforts have been made toward developing a proper strategy of limiting the transmission of C. jejuni to humans. Nevertheless, except for biosecurity measures, no available vaccine has been developed so far. Judging from the research findings, Omp18, AhpC outer membrane protein, and FlgH flagellin subunits of C. jejuni could be adopted as surface protein antigens of C. jejuni for screening dominant epitope thanks to their strong antigenicity, expression of varying strains, and conservative sequence. In this study, bioinformatics technology was adopted to analyze the T-B antigenic epitopes of Omp18, AhpC, and FlgH in C. jejuni strain NCTC11168. Both ELISA and Western Blot methods were adopted to screen the dominant T-B combined epitope. GGS (GGCGGTAGC) sequence was adopted to connect the dominant T-B combined epitope peptides and to construct the prokaryotic expression system of tandem repeats of antigenic epitope peptides. The mouse infection model was adopted to assess the immunoprotective effect imposed by the trivalent T-B combined with antigen epitope peptide based on Omp18/AhpC/FlgH. In this study, a tandem epitope AhpC-2/Omp18-1/FlgH-1 was developed, which was composed of three epitopes and could effectively enhance the stability and antigenicity of the epitope while preserving its structure. The immunization of BALB/c mice with a tandem epitope could induce protective immunity accompanied by the generation of IgG2a antibody response through the in vitro synthesis of IFN-γ cytokines. Judging from the results of immune protection experiments, the colonization of C. jejuni declined to a significant extent, and it was expected that AhpC-2/Omp18-1/FlgH-1 could be adopted as a candidate antigen for genetic engineering vaccine of C. jejuni MAP.

16.
Int J Antimicrob Agents ; 56(2): 106068, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32603684

RESUMO

A combination of targeted molecular methods and phenotypic drug-susceptibility testing is the most widely used approach to detect drug resistance in Mycobacterium tuberculosis isolates. We report the delay in the introduction of an efficient anti-tuberculous drug regimen because of a M. tuberculosis strain displaying a high level of resistance to isoniazid, in the absence of the common mutations associated with isoniazid-resistance, including katG mutations and inhA promoter mutations. Whole-genome sequencing (WGS) identified a large loss-of-function insertion (>1000 pb) at the end of katG in the isolate together with a -57C>T ahpC mutation, a resistance mechanism that would have remained undetected by a conventional molecular targeted approach. A retrospective search using publicly available WGS data of more than 1200 isoniazid-resistant isolates and a similar sized control dataset of isoniazid-susceptible isolates revealed that most (22/31) isoniazid-resistant, KatG loss-of-function mutants had an associated rare ahpC promoter mutation. In contrast, only 7 of 1411 isoniazid-susceptible strains carried a rare ahpC promoter mutation, including shared mutations with the 31 isoniazid-resistant KatG loss-of-function mutants. These results indicate that rare ahpC promoter mutations could be used as a proxy for investigating simultaneous KatG loss-of-function or missense mutations. In addition, WGS in routine diagnosis would improve drug susceptibility testing in M. tuberculosis clinical isolates and is an efficient tool for detecting resistance mechanisms undetected by conventional molecular methods.


Assuntos
Proteínas de Bactérias/genética , Catalase/genética , Isoniazida/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Peroxirredoxinas/genética , Tuberculose Resistente a Múltiplos Medicamentos/genética , Antituberculosos/farmacologia , Membrana Externa Bacteriana/efeitos dos fármacos , DNA Bacteriano , Genes Bacterianos , Estudos de Associação Genética , Humanos , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/isolamento & purificação , Regiões Promotoras Genéticas , Estudos Retrospectivos , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Sequenciamento Completo do Genoma
17.
Microb Drug Resist ; 24(6): 844-851, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29683767

RESUMO

The emergence and spread of drug-resistant tuberculosis (TB) pose a threat to TB control in Sri Lanka. Isoniazid (INH) is a key element of the first-line anti-TB treatment regimen. Resistance to INH is mainly associated with point mutations in katG, inhA, and ahpC genes. The objective of this study was to determine mutations of these three genes in INH-resistant Mycobacterium tuberculosis (MTb) strains in Sri Lanka. Complete nucleotide sequence of the three genes was amplified by polymerase chain reaction and subjected to DNA sequencing. Point mutations in the katG gene were identified in 93% isolates, of which the majority (78.6%) were at codon 315. Mutations at codons 212 and 293 of the katG gene have not been reported previously. Novel mutations were recognized in the promoter region of the inhA gene (C deletion at -34), fabG1 gene (codon 27), and ahpC gene (codon 39). Single S315T mutation in the katG gene led to a high level of resistance, while a low level of resistance with high frequency (41%) was observed when katG codon 315 coexisted with the mutation at codon 463. Since most of the observed mutations of all three genes coexisted with the katG315 mutation, screening of katG315 mutations will be a useful marker for molecular detection of INH resistance of MTb in Sri Lanka.


Assuntos
Farmacorresistência Bacteriana/genética , Mycobacterium tuberculosis/genética , Mutação Puntual/genética , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Antituberculosos/uso terapêutico , Proteínas de Bactérias/genética , Códon/genética , DNA Bacteriano/genética , Farmacorresistência Bacteriana/efeitos dos fármacos , Genes Bacterianos/genética , Humanos , Isoniazida , Testes de Sensibilidade Microbiana/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Análise de Sequência de DNA/métodos , Sri Lanka , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
18.
Antioxid Redox Signal ; 28(7): 521-536, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28375740

RESUMO

AIMS: Peroxiredoxins (Prxs) are ubiquitous cysteine-based peroxidases involved in oxidant defense and signal transduction. Despite much study, the precise roles of conserved residues remain poorly defined. In this study, we carried out extensive functional and structural characterization of 10 variants of such residues in a model decameric bacterial Prx. RESULTS: Three active site proximal mutations of Salmonella typhimurium AhpC, T43V, R119A, and E49Q, lowered catalytic efficiency with hydrogen peroxide by 4-5 orders of magnitude, but did not affect reactivity toward their reductant, AhpF. pKa values of the peroxidatic cysteine were also shifted up by 1-1.3 pH units for these and a decamer disruption mutant, T77I. Except for the decamer-stabilizing T77V, all mutations destabilized decamers in the reduced form. In the oxidized form, three mutants-T77V, T43A, and T43S-exhibited stabilized decamers and were more efficiently reduced by AhpF than wild-type AhpC. Crystal structures of most mutants were solved and many showed alterations in stability of the fully folded active site loop. INNOVATION: This is the first study of Prx mutants to comprehensively assess the effects of mutations on catalytic activities, the active site cysteine pKa, and the protein structure and oligomeric status. CONCLUSION: The Arg119 side chain must be properly situated for efficient catalysis, but for other debilitating variants, the functional defects could be explained by structural perturbations and/or associated decamer destabilization rather than direct effects. This underscores the importance of our comprehensive approach. A remarkable new finding was the preference of the reductant for decamers. Antioxid. Redox Signal. 28, 521-536.


Assuntos
Catálise , Peróxido de Hidrogênio/química , Peroxidases/química , Peroxirredoxinas/química , Sequência de Aminoácidos/genética , Domínio Catalítico , Cristalografia por Raios X , Cisteína/química , Peróxido de Hidrogênio/metabolismo , Cinética , Modelos Moleculares , Mutação , Oxirredução , Peroxidases/genética , Peroxidases/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Salmonella typhimurium/enzimologia , Salmonella typhimurium/genética
19.
Free Radic Biol Med ; 115: 252-265, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29223533

RESUMO

The Enterococcus faecalis alkyl hydroperoxide reductase complex (AhpR) with its subunits AhpC (EfAhpC) and AhpF (EfAhpF) are of paramount importance to restore redox homeostasis. Recently, the novel phenomenon of swapping of the catalytic domains of EfAhpF was uncovered. Here, we visualized its counterpart EfAhpC (187 residues) from the vancomycin-resistant E. faecalis (V583) bacterium by electron microscopy and demonstrate, that in contrast to other bacterial AhpCs, EfAhpC forms a stable decamer-ring irrespective of the redox state. The first crystallographic structure (2.8Å resolution) of the C-terminal truncated form (EfAhpC1-172) confirms the decamer ring and provides new insight into a transition state in-between a fully folded to a locally unfolded conformation in the catalytic center due to redox modulation. Amino acid substitutions of residues in the N- and C-termini as well as the oligomeric interphase of EfAhpC provide information into their structural and enzymatic roles. Mutagenesis, enzymatic and biophysical studies reveal the effect of the unusual existence of four cysteines in EfAhpC, which might optimize the functional adaptation of the E. faecalis enzyme under various physiological conditions.


Assuntos
Proteínas de Bactérias/metabolismo , Enterococcus faecalis/fisiologia , Infecções por Bactérias Gram-Positivas/imunologia , Peroxirredoxinas/metabolismo , Antibacterianos/uso terapêutico , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Domínio Catalítico/genética , Cristalografia por Raios X , Cisteína/genética , Resistência a Medicamentos , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Homeostase , Humanos , Modelos Moleculares , Estrutura Molecular , Mutagênese Sítio-Dirigida , Oxirredução , Peroxirredoxinas/química , Peroxirredoxinas/genética , Conformação Proteica , Vancomicina/uso terapêutico
20.
Biochim Biophys Acta Gen Subj ; 1862(12): 2797-2805, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30251668

RESUMO

Peroxiredoxins (Prxs) are thiol peroxidases that scavenge various peroxide substrates such as hydrogen peroxide (H2O2), alkyl hydroperoxides and peroxinitrite. They also function as chaperones and are involved in signal transduction by H2O2 in eukaryotic cells. The genome of Aquifex aeolicus, a microaerophilic, hyperthermophilic eubacterium, encodes four Prxs, among them an alkyl hydroperoxide reductase AhpC2 which was found to be closely related to archaeal 1-Cys peroxiredoxins. We determined the crystal structure of AhpC2 at 1.8 Šresolution and investigated its oligomeric state in solution by electron microscopy. AhpC2 is arranged as a toroid-shaped dodecamer instead of the typically observed decamer. The basic folding topology and the active site structure are conserved and possess a high structural similarity to other 1-Cys Prxs. However, the C-terminal region adopts an opposite orientation. AhpC2 contains three cysteines, Cys49, Cys212, and Cys218. The peroxidatic cysteine CP49 was found to be hyperoxidized to the sulfonic acid (SO3H) form, while Cys212 forms an intra-monomer disulfide bond with Cys218. Mutagenesis experiments indicate that Cys212 and Cys218 play important roles in the oligomerization of AhpC2. Based on these structural characteristics, we proposed the catalytic mechanism of AhpC2. This study provides novel insights into the structure and reaction mechanism of 1-Cys peroxiredoxins.


Assuntos
Eubacterium/química , Peroxirredoxinas/química , Catálise , Domínio Catalítico , Dissulfetos/química , Oxirredução , Peroxirredoxinas/genética , Peroxirredoxinas/isolamento & purificação , Polimerização , Conformação Proteica , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA