Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Proteome Res ; 22(7): 2327-2338, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37232578

RESUMO

Incidence and mortality rates of alcoholic liver disease (ALD) is one of the highest in the world. In the present study, we found that the genetic knockout nuclear receptor the peroxisome proliferator-activated receptor α (PPARα) exacerbated ALD. Lipidomics of the liver revealed changed levels of lipid species encompassing phospholipids, ceramides (CM), and long-chain fatty acids in Ppara-null mice induced by ethanol. Moreover, 4-hydroxyphenylacetic acid (4-HPA) was changed as induced by ethanol in the metabolome of urine. Moreover, the phylum level analysis showed a decrease in the level of Bacteroidetes and an increase in the level of Firmicutes after alcohol feeding in Ppara-null mice, while there was no change in wild-type mice. In Ppara-null mice, the level of Clostridium_sensu_stricto_1 and Romboutsia were upregulated after alcohol feeding. These data revealed that PPARα deficiency potentiated alcohol-induced liver injury through promotion of lipid accumulation, changing the metabolome of urine, and increasing the level of Clostridium_sensu_stricto_1 and Romboutsia. 4-HPA could improve ALD in mice by regulating inflammation and lipid metabolism. Therefore, our findings suggest a novel approach to the treatment of ALD: focusing on the gut microbiota and its metabolites. Data are available via ProteomeXchange (PXD 041465).


Assuntos
Microbioma Gastrointestinal , Hepatopatias Alcoólicas , Animais , Camundongos , Etanol/efeitos adversos , Etanol/metabolismo , Etanol/toxicidade , Fígado/metabolismo , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/metabolismo , Metabolômica , Camundongos Knockout , Fosfolipídeos/metabolismo , PPAR alfa/fisiologia
2.
Pharmacol Res ; 177: 106125, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35149186

RESUMO

Alcohol-induced liver injury (ALI) is associated with inflammatory responses regulated by macrophages. Activation of macrophages plays a crucial role in ALI while DNA methylation-regulated gene silencing is associated with inflammation processes in macrophages. Proline-Serine-Threonine Phosphatase Interacting Protein 2 (PSTPIP2), which belongs to the Fes/CIP4 homology-Bin/Amphiphysin/Rvs domain family of proteins and plays a role in macrophages. Previous studies have shown that Pstpip2 can be methylated. Herein, its expression was found to be significantly downregulated in primary liver macrophages isolated from EtOH-fed mice and EtOH-induced RAW264.7 cells. Overexpression of PSTPIP2 using liver-specific recombinant AAV serotype 9 (rAAV9)-PSTPIP2 in EtOH-fed mice dramatically alleviated liver injury and inflammatory responses. In addition, silencing of PSTPIP2 aggravated the alcohol-induced inflammatory response in vitro. Mechanistically, PSTPIP2 might affect macrophage-induced inflammatory responses by regulating the STAT1 and NF-κB signaling pathways. The downregulation of PSTPIP2 in ALI may be associated with DNA methylation. Methylation-specific PCR and western blotting analyses showed that EtOH induced abnormal DNA methylation patterns and increased the protein expression levels of DNMT1, DNMT3a, and DNMT3b. The chromatin immunoprecipitation assay showed that DNMT3a could directly bind to the Pstpip2 promoter and act as a principal regulator of PSTPIP2 expression. Moreover, silencing of DNMT3a significantly restored the EtOH-induced low expression of PSTPIP2 and inhibited EtOH-induced inflammation. Overall, these findings provide a detailed understanding of the possible functions and mechanisms of PSTPIP2 in ALI, thus providing new substantive research to elucidate the pathogenesis of ALI and investigate potential targeted treatment strategies.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , NF-kappa B , Animais , Doença Hepática Crônica Induzida por Substâncias e Drogas/genética , Metilação de DNA , Metilases de Modificação do DNA/genética , Etanol/toxicidade , Inflamação/genética , Camundongos , NF-kappa B/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo
3.
Phytother Res ; 36(3): 1268-1283, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35084790

RESUMO

Costunolide (cos) derived from the roots of Dolomiaea souliei (Franch.), which belongs to the Dolomiaea genus in the family Compositae, exert the anti-inebriation effect mainly by inhibiting the absorption of alcohol in the gastrointestinal tract. However, the protective effect of cos against alcohol-induced liver injury (ALI) remains obscure. The present study was aimed to evaluate the hepatoprotective effects of cos (silymarin was used as positive control) against ALI and its potential mechanisms. MTT was used to examine the effect of cos on the cell viability of L-02 cells. Plasma was separated from blood that used to test the levels of TNF-α, IL-6 and IL-12, and LPS while serum separated from blood which used to detect the level of ALT and AST. Liver tissues were obtained for histopathological examination and western blot analysis. Fresh mice feces samples were collected for the detection of bacterial composition. Cos exhibited protective effect against alcoholic-induced liver injury by regulating gut microbiota capacities (higher relative abundance of Firmicutes and Actinobacteria while lower in Bacteroidetes and Proteobacteria), adjusting oxidative stress (reduced the activities of MDA and ROS while promoted SOD, GSH and GSH-PX in L-02 cells) and attenuating inflammation (decreased the levels of ALT, AST, LPS, IL-6, IL-12 and TNF-α) via LPS-TLR4-NF-κB p65 signaling pathway, which might be an active therapeutic agent for treatment of ALI.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Microbioma Gastrointestinal , Animais , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Fígado , Camundongos , NF-kappa B/metabolismo , Estresse Oxidativo , Sesquiterpenos
4.
Clin Sci (Lond) ; 134(14): 1935-1956, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32639005

RESUMO

The regulation of macrophages during inflammatory responses is a crucial process in alcoholic liver disease (ALD) and aberrant macrophage DNA methylation is associated with inflammation. Our preliminary screening results of macrophage methylation in the present study demonstrated the zinc finger SWI2/SNF2 and MuDR (SWIM)-domain containing 3 (ZSWIM3) were hypermethylated in the 5' untranslated region (5'-UTR) region. ZSWIM3, a novel zinc finger-chelate domain of SWIM, is predicted to function in DNA-binding and protein-binding interactions. Its expression was found to be consistently decreased in macrophages isolated from livers of ethyl alcohol (EtOH)-fed mice and in EtOH+lipopolysaccharide (LPS)-induced RAW264.7 cells. Over-expression of ZSWIM3 was found to attenuate chronic+binge ethanol feeding-induced liver injury and inhibit inflammatory responses in vivo. Enforced expression of ZSWIM3 in vitro was also found to have anti-inflammatory effects. Aberrant expression of ZSWIM3 in alcohol-induced liver injury (ALI) was found to be associated with hypermethylation. Analysis of CpG prediction indicated the presence of two methylated sites in the ZSWIM3 promoter region and methylation inhibitor and DNA methyltransferases (DNMTs)-siRNA transfection were found to restore down-regulated ZSWIM3. Chromatin immunoprecipitation (ChIP) assay and molecular docking affirmed the role of DNMT 3b (DNMT3b) as a principal regulator of ZSWIM3 expression. Mechanistically, ZSWIM3 might affect inflammation by binding with tumor necrosis factor receptor-associated factor 2 (TRAF2), which further mediates the activation of the nuclear transcription factor κB (NF-κB) pathway. The present study, therefore, provides detailed insights into the possible structure and function of ZSWIM3 and thus, contributes new substantial research in the elucidation of the pathogenesis of ALI.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Hepatopatias Alcoólicas/metabolismo , Macrófagos/metabolismo , Animais , Metilação de DNA , Modelos Animais de Doenças , Hepatopatias Alcoólicas/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Fator 2 Associado a Receptor de TNF/metabolismo , DNA Metiltransferase 3B
5.
Chem Biodivers ; 17(12): e2000619, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33084229

RESUMO

Lipid accumulation, inflammatory responses and oxidative stress have been implicated in the pathology of alcohol-induced liver injury (ALI). In this work, we evaluated the effects of the functional food XingJiuTang (XJT) on ALI and explored the underlying mechanism. We used alcohol-stimulated human normal hepatocytes L02 for in vitro experiments, while for in vivo experiments, 55 % alcohol was intragastrically administrated to C57BL/6 mice at 16 mL/kg with pre-administration of bifendate and XJT. Liver histology and function, along with the inflammatory cytokines, oxidative mediators and SIRT1/Nrf-2 pathway were evaluated. The results showed that XJT treatment significantly alleviated ALI, ameliorated lipid peroxidation, improved the liver function impaired by alcohol and inhibited the hepatocytes apoptosis in vitro and in vivo. In addition, XJT treatment modulated the activation of the SIRT1/Nrf-2 signaling pathway and suppressed the overexpression of NOX4. Overall, the functional food XJT effectively protects against experimental ALI via activating the SIRT1/Nrf-2 pathway.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Etanol/toxicidade , Alimento Funcional , Medicina Tradicional Chinesa , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/metabolismo , Animais , Doença Hepática Induzida por Substâncias e Drogas/fisiopatologia , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/metabolismo , Testes de Função Hepática , Espectrometria de Massas/métodos , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo
6.
Appl Microbiol Biotechnol ; 103(20): 8597-8608, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31515596

RESUMO

Long-term alcohol consumption causes liver injuries such as alcoholic hepatitis, fatty liver, and endotoxemia. Some probiotics were demonstrated to exert beneficial effects in the gastrointestinal tract. The present study was aimed to evaluate the protective effects of Lactobacillus plantarum CMU995 against alcohol-induced liver injury. The mice were orally administered L. plantarum CMU995 for 1 week, followed by the administration of alcohol and different tested substances daily for 6 weeks. The liver injury was examined by measuring the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), malondialdehyde (MDA), anti-oxidative enzyme, endotoxin, inflammatory cytokines, and lipid accumulation in the liver or serum among different groups. L. plantarum CMU995 exhibited beneficial effects on alcohol-induced liver injury via reduction in the serum concentration of AST, ALT, cholesterol, triglycerides, endotoxin, TNF-α, IL-1ß, and oxidative stress. Furthermore, we also found that the levels of glutathione (GSH), superoxide dismutase (SOD), and intestinal tight junction protein zonula occludens-1 (ZO-1) were considerably higher in L. plantarum CMU995-fed groups when compared with placebo group. Meanwhile, the protective effects were demonstrated biological gradients as controversial dose-dependent. We speculate that L. plantarum CMU995 inhibited the migration of alcohol-derived endotoxin into the blood and liver, thereby improving the intestinal barrier. The present evidence may provide a novel microbiota-based strategy to prevent the alcohol-induced liver injury.


Assuntos
Lactobacillus plantarum/crescimento & desenvolvimento , Hepatopatias Alcoólicas/prevenção & controle , Probióticos/administração & dosagem , Administração Oral , Alanina Transaminase/sangue , Consumo de Bebidas Alcoólicas/efeitos adversos , Animais , Aspartato Aminotransferases/sangue , Citocinas/sangue , Modelos Animais de Doenças , Endotoxinas/sangue , Lipídeos/sangue , Hepatopatias Alcoólicas/patologia , Camundongos , Placebos/administração & dosagem , Resultado do Tratamento
7.
J Hepatol ; 69(3): 687-696, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29705237

RESUMO

BACKGROUND & AIMS: Sterile inflammation resulting in alcoholic hepatitis (AH) occurs unpredictably after many years of excess alcohol intake. The factors responsible for the development of AH are not known but mitochondrial damage with loss of mitochondrial function are common features. Hcar2 is a G-protein coupled receptor which is activated by ß-hydroxybutyrate (BHB). We aimed to determine the relevance of the BHB-Hcar2 pathway in alcoholic liver disease. METHODS: We tested if loss of BHB production can result in increased liver inflammation. We further tested if BHB supplementation is protective in AH through interaction with Hcar2, and analyzed the immune and cellular basis for protection. RESULTS: Humans with AH have reduced hepatic BHB, and inhibition of BHB production in mice aggravated ethanol-induced AH, with higher plasma alanine aminotransferase levels, increased steatosis and greater neutrophil influx. Conversely supplementation of BHB had the opposite effects with reduced alanine aminotransferase levels, reduced steatosis and neutrophil influx. This therapeutic effect of BHB is dependent on the receptor Hcar2. BHB treatment increased liver Il10 transcripts, and promoted the M2 phenotype of intrahepatic macrophages. BHB also increased the transcriptional level of M2 related genes in vitro bone marrow derived macrophages. This skewing towards M2 related genes is dependent on lower mitochondrial membrane potential (Δψ) induced by BHB. CONCLUSIONS: Collectively, our data shows that BHB production during excess alcohol consumption has an anti-inflammatory and hepatoprotective role through an Hcar2 dependent pathway. This introduces the concept of metabolite-based therapy for AH. LAY SUMMARY: Alcoholic hepatitis is a life-threatening condition with no approved therapy that occurs unexpectedly in people who consume excess alcohol. The liver makes many metabolites, and we demonstrate that loss of one such metabolite ß-hydroxybutyrate occurs in patients with alcoholic hepatitis. This loss can increase alcohol-induced liver injury, and ß-hydroxybutyrate can protect from alcohol-induced liver injury via a receptor on liver macrophages. This opens the possibility of metabolite-based therapy for alcoholic hepatitis.


Assuntos
Ácido 3-Hidroxibutírico/metabolismo , AMP Cíclico/metabolismo , Hepatopatias Alcoólicas , Fígado , Mitocôndrias Hepáticas , Receptores Acoplados a Proteínas G/metabolismo , Animais , Depressores do Sistema Nervoso Central/efeitos adversos , Depressores do Sistema Nervoso Central/metabolismo , Etanol/efeitos adversos , Etanol/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Inflamação/metabolismo , Fígado/metabolismo , Fígado/patologia , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/patologia , Hepatopatias Alcoólicas/prevenção & controle , Testes de Função Hepática , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Substâncias Protetoras/metabolismo
8.
Mar Drugs ; 15(4)2017 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-28394291

RESUMO

Schizochytrium protein hydrolysate (SPH) was prepared through stepwise enzymatic hydrolysis by alcalase and flavourzyme sequentially. The proportion of hydrophobic amino acids of SPH was 34.71%. The molecular weight (MW) of SPH was principally concentrated at 180-3000 Da (52.29%). SPH was divided into two fractions by ultrafiltration: SPH-I (MW < 3 kDa) and SPH-II (MW > 3 kDa). Besides showing lipid peroxidation inhibitory activity in vitro, SPH-I exhibited high DPPH and ABTS radicals scavenging activities with IC50 of 350 µg/mL and 17.5 µg/mL, respectively. In addition, the antioxidant activity of SPH-I was estimated in vivo using the model of acute alcohol-induced liver injury in mice. For the hepatoprotective effects, oral administration of SPH-I at different concentrations (100, 300 mg/kg BW) to the mice subjected to alcohol significantly decreased serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and hepatic malondialdehyde (MDA) level compared to the untreated mice. Besides, SPH-I could effectively restore the hepatic superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities and glutathione (GSH) level. Results suggested that SPH was rich in biopeptides that could be exploited as antioxidant molecules against oxidative stress in human body.


Assuntos
Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Fungos/química , Fígado/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Hidrolisados de Proteína/farmacologia , Alanina Transaminase/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Tetracloreto de Carbono/farmacologia , Catalase/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Etanol/farmacologia , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Masculino , Malondialdeído/metabolismo , Camundongos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fitoterapia/métodos , Superóxido Dismutase/metabolismo
9.
Mar Drugs ; 14(12)2016 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-27999369

RESUMO

Dietary nucleotides play a role in maintaining the immune responses of both animals and humans. Oral administration of nucleic acids from salmon milt have physiological functions in the cellular metabolism, proliferation, differentiation, and apoptosis of human small intestinal epithelial cells. In this study, we examined the effects of DNA-rich nucleic acids prepared from salmon milt (DNSM) on the development of liver fibrosis in an in vivo ethanol-carbon tetrachloride cirrhosis model. Plasma aspartate transaminase and alanine transaminase were significantly less active in the DNSM-treated group than in the ethanol plus carbon tetrachloride (CCl4)-treated group. Collagen accumulation in the liver and hepatic necrosis were observed histologically in ethanol plus CCl4-treated rats; however, DNSM-treatment fully protected rats against ethanol plus CCl4-induced liver fibrosis and necrosis. Furthermore, we examined whether DNSM had a preventive effect against alcohol-induced liver injury by regulating the cytochrome p450 2E1 (CYP2E1)-mediated oxidative stress pathway in an in vivo model. In this model, CYP2E1 activity in ethanol plus CCl4-treated rats increased significantly, but DNSM-treatment suppressed the enzyme's activity and reduced intracellular thiobarbituric acid reactive substances (TBARS) levels. Furthermore, the hepatocytes treated with 100 mM ethanol induced an increase in cell death and were not restored to the control levels when treated with DNSM, suggesting that digestive products of DNSM are effective for the prevention of alcohol-induced liver injury. Deoxyadenosine suppressed the ethanol-induced increase in cell death and increased the activity of alcohol dehydrogenase. These results suggest that DNSM treatment represents a novel tool for the prevention of alcohol-induced liver injury.


Assuntos
Tetracloreto de Carbono/farmacologia , Etanol/farmacologia , Fígado/efeitos dos fármacos , Nucleoproteínas/farmacologia , Salmão/metabolismo , Administração Oral , Alanina Transaminase/sangue , Animais , Apoptose/efeitos dos fármacos , Aspartato Aminotransferases/sangue , Colágeno/análise , Citocromo P-450 CYP2E1/metabolismo , DNA/metabolismo , Glutationa/metabolismo , Hepatócitos/efeitos dos fármacos , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Cirrose Hepática/metabolismo , Hepatopatias/patologia , Masculino , Modelos Biológicos , Nucleoproteínas/isolamento & purificação , Ratos , Superóxido Dismutase/metabolismo
10.
Biochem Biophys Res Commun ; 458(3): 626-631, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25684186

RESUMO

We had previously shown that alcohol consumption can induce cellular isoaspartate protein damage via an impairment of the activity of protein isoaspartyl methyltransferase (PIMT), an enzyme that triggers repair of isoaspartate protein damage. To further investigate the mechanism of isoaspartate accumulation, hepatocytes cultured from control or 4-week ethanol-fed rats were incubated in vitro with tubercidin or adenosine. Both these agents, known to elevate intracellular S-adenosylhomocysteine levels, increased cellular isoaspartate damage over that recorded following ethanol consumption in vivo. Increased isoaspartate damage was attenuated by treatment with betaine. To characterize isoaspartate-damaged proteins that accumulate after ethanol administration, rat liver cytosolic proteins were methylated using exogenous PIMT and (3)H-S-adenosylmethionine and proteins resolved by gel electrophoresis. Three major protein bands of ∼ 75-80 kDa, ∼ 95-100 kDa, and ∼ 155-160 kDa were identified by autoradiography. Column chromatography used to enrich isoaspartate-damaged proteins indicated that damaged proteins from ethanol-fed rats were similar to those that accrued in the livers of PIMT knockout (KO) mice. Carbamoyl phosphate synthase-1 (CPS-1) was partially purified and identified as the ∼ 160 kDa protein target of PIMT in ethanol-fed rats and in PIMT KO mice. Analysis of the liver proteome of 4-week ethanol-fed rats and PIMT KO mice demonstrated elevated cytosolic CPS-1 and betaine homocysteine S-methyltransferase-1 when compared to their respective controls, and a significant reduction of carbonic anhydrase-III (CA-III) evident only in ethanol-fed rats. Ethanol feeding of rats for 8 weeks resulted in a larger (∼ 2.3-fold) increase in CPS-1 levels compared to 4-week ethanol feeding indicating that CPS-1 accumulation correlated with the duration of ethanol consumption. Collectively, our results suggest that elevated isoaspartate and CPS-1, and reduced CA-III levels could serve as biomarkers of hepatocellular injury.


Assuntos
Carbamoil-Fosfato Sintase (Amônia)/análise , Anidrase Carbônica III/análise , Doença Hepática Induzida por Substâncias e Drogas/patologia , Ácido Isoaspártico/análise , Fígado/patologia , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/metabolismo , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Anidrase Carbônica III/metabolismo , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Etanol/efeitos adversos , Ácido Isoaspártico/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/genética , Ratos , Ratos Wistar , S-Adenosil-Homocisteína/metabolismo
11.
J Agric Food Chem ; 72(27): 15265-15275, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38918075

RESUMO

Probiotics can regulate gut microbiota and protect against acute alcohol-induced liver injury through the gut-liver axis. However, efficacy is strain-dependent, and their mechanism remains unclear. This study investigated the effect of lactic acid bacteria (LAB), including Lacticaseibacillus paracasei E10 (E10), Lactiplantibacillus plantarum M (M), Lacticaseibacillus rhamnosus LGG (LGG), Lacticaseibacillus paracasei JN-1 (JN-1), and Lacticaseibacillus paracasei JN-8 (JN-8), on the prevention of acute alcoholic liver injury in mice. We found that LAB pretreatment reduced serum alanine transaminase (ALT) and aspartate transaminase (AST) and reduced hepatic total cholesterol (TC) and triglyceride (TG). JN-8 pretreatment exhibited superior efficacy in improving hepatic antioxidation. LGG and JN-8 pretreatment significantly attenuated hepatic and colonic inflammation by decreasing the expression of interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) and increasing the expression of interleukin 10 (IL-10). JN-1 and JN-8 pretreatments have better preventive effects than other LAB pretreatment on intestinal barrier dysfunction. In addition, the LAB pretreatment improved gut microbial dysbiosis and bile acid (BA) metabolic abnormality. All of the strains were confirmed to have bile salt deconjugation capacities in vitro, where M and JN-8 displayed higher activities. This study provides new insights into the prevention and mechanism of LAB strains in preventing acute alcoholic liver injury.


Assuntos
Ácidos e Sais Biliares , Microbioma Gastrointestinal , Lactobacillales , Fígado , Camundongos Endogâmicos C57BL , Probióticos , Animais , Camundongos , Probióticos/administração & dosagem , Fígado/metabolismo , Masculino , Humanos , Ácidos e Sais Biliares/metabolismo , Lactobacillales/metabolismo , Hepatopatias Alcoólicas/prevenção & controle , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/microbiologia , Aspartato Aminotransferases/metabolismo , Aspartato Aminotransferases/sangue , Alanina Transaminase/metabolismo , Alanina Transaminase/sangue , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Interleucina-6/metabolismo , Interleucina-6/genética , Interleucina-10/genética , Interleucina-10/metabolismo , Etanol/efeitos adversos
12.
Front Pharmacol ; 15: 1378653, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39005935

RESUMO

Introduction: Excessive alcohol intake often results in hangovers and inflammatory liver damage, posing a significant health concern. Current treatment options for hangovers are still insufficient, highlighting the urgent need for new therapeutic approaches. Psyllium fiber (PF) is well-known for its gastrointestinal benefits, but its effect on hangovers is less explored. Methods: We utilized a mouse model with a single binge drinking (4 g/kg) to induce hangover and inflammatory liver injury. Intestine and liver injury were serologically and histologically estimated. Hangover symptoms were assessed using cylinder and footprint tests to objectively quantify hangover symptoms in mice. Results: Binge drinking significantly activated alcohol-metabolizing enzymes in the small intestine and liver, leading to inflammatory damage. Concurrently, there was a rise in alcohol metabolites such as acetaldehyde and acetone, which exhibited a positive correlation with hangover symptoms in mice. Interestingly, the oral administration of PF (100 mg/kg) alongside alcohol consumption significantly reduced the activity of these enzymes and lowered the levels of alcohol metabolites. Mice treated with PF exhibited a considerable improvement in hangover symptoms and a reduction in hepatic inflammation, compared to control groups. Furthermore, in vitro experiments using HepG2 cell lines and semipermeable membranes demonstrated that PF effectively inhibits alcohol absorption into the body. Discussion: In conclusion, PF demonstrates a potential protective effect against alcohol-induced hangover and liver injury by inhibiting the absorption of alcohol and lowering hangover-related alcohol metabolites. This study suggests that PF could serve as an effective therapeutic option for mitigating the adverse effects of excessive alcohol consumption.

13.
Heliyon ; 10(1): e23336, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38205320

RESUMO

Aims: Excessive alcohol consumption can lead to alcoholic liver diseases (ALDs). Tetrastigma hemsleyanum Diels et Gilg is a rare Chinese medicinal herb. Tetrastigma hemsleyanum Diels et Gilg has been validated to be highly effective for treating hepatitis. Kaempferol and nicotiflorin are two highly representative flavonoids, which have exhibit therapeutic effects on liver disease. Therefore, the protective mechanism of kaempferol and nicotiflorin on alcohol-induced liver injury were investigated. Main methods: Forty mice were used in this study. After treatment of Kaempferol and nicotiflorin, serum and liver were collected and used for determination of biochemical indicators, H&E staining, and molecular detection. The interaction of miRNAs from serum extracellular vehicles (EVs) with mRNAs and 16S rRNA sequencing of gut microbiota were also investigated. Key findings: The results showed that kaempferol and nicotiflorins significantly ameliorated alcohol-induced liver damage and observably regulated gut microbiota. Specifically, the levels of malondialdehyde (MDA) and CYP2E1 in the liver significantly reduced, and the activity of superoxide dismutase (SOD) and glutathione (GSH) in the liver evidently increased. They also significantly relieved liver oxidative stress and lipid accumulation by suppressing miR-138-5p expression, inversely enhancing deacetylase silencing information regulator 2 related enzyme-1 (SIRT1) levels and then decreasing farnesoid X receptor (FXR) acetylation, which then modulated Nrf2 and SREBP-1c signaling pathways to regulate oxidative stress and lipid metabolism induced by alcohol. Significance: Kaempferol and nicotiflorin reduced alcohol-induced liver damage by enhancing alcohol metabolism and reducing oxidative stress and lipid metabolism. The intestinal microorganism disorder was also ameliorated after oral kaempferol and nicotiflorin.

14.
ACG Case Rep J ; 11(4): e01316, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38560014

RESUMO

Pneumocystis jirovecii is an opportunistic fungus typically causing pulmonary infection in immunocompromised persons. We present a case of Pneumocystis jirovecii pneumonia (PJP) in a patient with alcoholic hepatitis and underlying cirrhosis. PJP in patients with alcoholic hepatitis or cirrhosis is sparsely reported in literature. This condition carries a poor prognosis and high mortality. Clinicians need to recognize alcohol use resulting in liver damage as a significant etiological risk factor for PJP.

15.
Biomolecules ; 13(1)2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36671520

RESUMO

Alcohol abuse, a global health problem, is closely associated with many pathological processes, such as dyslipidemia and cardiovascular disease. In particular, excessive alcohol consumption promotes dyslipidemia and liver damage, such as hepatic steatosis, fibrosis, and cirrhosis. Beeswax alcohol (BWA) is a natural product used for its antioxidant properties that has not been evaluated for its efficacy in alcohol-induced liver injury. In the present study, zebrafish were exposed to 1% ethanol with supplementation of 10% fermented black rice bran (BRB-F), 10% BWA, or 10% mixtures of BWA+BRB-F (MIX). The BRB-F, BWA, and MIX supplementation increased the survival rate dramatically without affecting the body weight changes. In histology of hepatic tissue, alcoholic foamy degeneration was ameliorated by the BWA or MIX supplements. Moreover, dihydroethidium (DHE) and immunohistochemistry staining suggested that the MIX supplement decreased the hepatic ROS production and interleukin-6 expression significantly owing to the enhanced antioxidant properties, such as paraoxonase. Furthermore, the MIX supplement improved alcohol-induced dyslipidemia and oxidative stress. The BWA and MIX groups showed lower blood total cholesterol (TC) and triglyceride (TG) levels with higher high-density lipoprotein-cholesterol (HDL-C) than the alcohol-alone group. The MIX group showed the highest HDL-C/TC ratio and HDL-C/TG ratio with the lowest low-density lipoprotein (LDL)-C/HDL-C ratio. In conclusion, BWA and BRB-F showed efficacy to treat alcohol-related metabolic disorders, but the MIX supplement was more effective in ameliorating the liver damage and dyslipidemia, which agrees with an enhanced antioxidant and anti-inflammatory activity exhibited by BWA/BRB-F in a synergistic manner.


Assuntos
Dislipidemias , Oryza , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Etanol/metabolismo , Peixe-Zebra/metabolismo , Oryza/metabolismo , Fígado/metabolismo , Lipoproteínas LDL/metabolismo , Dislipidemias/metabolismo , Colesterol/metabolismo , HDL-Colesterol/metabolismo , Suplementos Nutricionais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/metabolismo , Triglicerídeos/metabolismo
16.
BMC Complement Med Ther ; 22(1): 168, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35733194

RESUMO

BACKGROUND: Current therapies for alcohol-induced liver injury are of limited efficacy and associated with significant side effects. With the proposed pathophysiology of alcohol-induced liver injury to be related to deranged gut microbiota, we hypothesized that probiotics would have beneficial effects in attenuating alcohol-induced liver injury. METHODS: Twenty-four male Sprague-Dawley rats were divided into 4 groups: control group, alcohol group, Lactobacillus plantarum group, and mixed-strain probiotics group. After 4 weeks, all rats were sacrificed, and blood samples were analyzed for ALT, lipopolysaccharide level (LPS), interleukin 6 (IL-6), and tumor necrosis factor-alpha (TNF-α). Liver tissues were processed for histopathology, malondialdehyde (MDA) level and immunohistochemistry for toll-like receptors 4 (TLR-4). Stool samples were collected, and 16S rRNA sequencing was used to analyze the fecal microbiota. RESULTS: Liver histopathology showed the presence of significant hepatocyte ballooning in the alcohol group as compared with the control group, and the treatment with L. plantarum or mixed-strain probiotics alleviated these changes. Significant elevation of serum ALT, LPS, IL-6, and TNF-α, hepatic MDA levels, and hepatic TLR-4 expression were observed in alcohol-fed rats as compared with control rats. The administration of L. plantarum or mixed-strain probiotics restored these changes to the levels of control rats. The relative abundance of fecal bacteria at genus level showed a significant reduction in Allobaculum, Romboutsia, Bifidobacterium, and Akkermansia in the alcohol group as compared with the control group. In probiotics-treated rats, significant increases in Allobaculum and Bifidobacterium were observed, while the relative abundance of Romboutsia and Akkermansia was unchanged compared to the alcohol group. A reduction in alpha diversity was observed in alcohol-treated rats, whereas the improvement was noted after probiotic treatment. CONCLUSIONS: The treatment with Lactobacillus, whether as single-, or mixed-strain probiotics, was beneficial in reducing the severity of alcohol-induced liver injury likely through the increase in beneficial bacteria, and the reduction of inflammatory responses, and oxidative stress.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Microbiota , Probióticos , Animais , Interleucina-6 , Lipopolissacarídeos , Masculino , Probióticos/farmacologia , Probióticos/uso terapêutico , RNA Ribossômico 16S , Ratos , Ratos Sprague-Dawley , Receptor 4 Toll-Like , Fator de Necrose Tumoral alfa
17.
Front Nutr ; 9: 989311, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36337656

RESUMO

The gut-liver axis (GLA) plays an important role in the development of alcohol-induced liver injury. Alcohol consumption is typically associated with folic acid deficiency. However, no clear evidence has confirmed the effect of folic acid supplementation on alcohol-induced liver injury via GLA homeostasis. In this study, male C57BL/6J mice were given 56% (v/v) ethanol and 5.0 mg/kg folic acid daily by gavage for 10 weeks to investigate potential protective mechanisms of folic acid in alcohol-induced liver injury via GLA homeostasis. Histopathological and biochemical analyses showed that folic acid improved lipid deposition and inflammation in the liver caused by alcohol consumption and decreased the level of ALT, AST, TG, and LPS in serum. Folic acid inhibited the expression of the TLR4 signaling pathway and its downstream inflammatory mediators in the liver and upregulated the expression of ZO-1, claudin 1, and occludin in the intestine. But compared with the CON group, folic acid did not completely eliminate alcohol-induced intestine and liver injury. Furthermore, folic acid regulated alcohol-induced alterations in gut microbiota. In alcohol-exposed mice, the relative abundance of Bacteroidota was significantly increased, and the relative abundance of unclassified_Lachnospiraceae was significantly decreased. Folic acid supplementation significantly increased the relative abundance of Verrucomicrobia, Lachnospiraceae_NK4A136_group and Akkermansia, and decreased the relative abundance of Proteobacteria. The results of Spearman's correlation analysis showed that serum parameters and hepatic inflammatory cytokines were significantly correlated with several bacteria, mainly including Bacteroidota, Firmicutes, and unclassified_Lachnospiraceae. In conclusion, folic acid could ameliorate alcohol-induced liver injury in mice via GLA homeostasis to some extent, providing a new idea and method for prevention of alcohol-induced liver injury.

18.
J Inflamm Res ; 15: 53-70, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35023943

RESUMO

BACKGROUND: Alcoholic liver disease (ALD) is liver damage caused by long-term drinking. Inflammation plays a central role in the progression of ALD. CD73 is a ubiquitously expressed glycosylphosphatidylinositol-anchored glycoprotein that is a key enzyme that converts ATP into adenosine. Evidence has shown that CD73 plays an important role in many diseases, but the role and mechanism of CD73 in alcohol-induced liver injury and inflammation is still unclear. METHODS: The alcohol-induced liver injury and inflammation mouse model was established. The rAAV9-CD73 was used to overexpress CD73. Isolation of primary macrophages (MΦ) from the liver was conducted. The effects of CD73 on alcohol-induced liver injury and inflammation were evaluated by quantitative real­time PCR, Western blotting, ELISA, and immunohistochemical assay. Flow cytometry was used to detect the cell cycle and apoptosis. RESULTS: Our results showed that overexpression of CD73 can reduce alcohol-induced liver damage, lipid accumulation, and the secretion of inflammatory cytokines. pEX3-CD73 can promote RAW264.7 cells proliferation and inhibit apoptosis via suppressing the activation of TLR4/MyD88/NF-κB signaling pathway. Inhibition of TLR4 further enhanced the anti-inflammatory effect of overexpression of CD73. CONCLUSION: Overexpression of CD73 can reduce alcohol-induced liver injury and inflammation. CD73 may serve as a potential therapeutic target for ALD.

19.
Cell Mol Gastroenterol Hepatol ; 12(5): 1599-1615, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34284164

RESUMO

BACKGROUND & AIMS: Alcohol-related liver disease (ALD) is characterized by accumulation of hepatic free fatty acids (FFAs) and triglyceride (TG)-enriched lipid droplets and cell death. The present study aimed to investigate how FFA or TG induces hepatocyte injury, thereby contributing to the development of ALD. METHODS: Hepatocyte-specific DGAT1 knockout (DGAT1Δhep) mice and lysosome-associated membrane protein 2 (LAMP2) overexpression mice were generated and subjected to chronic alcohol feeding. Cell studies were conducted to define the causal role and underlying mechanism of FFA-induced hepatocellular injury. RESULTS: Hepatocyte-specific DGAT1 deletion exacerbated alcohol-induced liver injury by increasing lipid accumulation and endoplasmic reticulum (ER) stress, reducing LAMP2 protein levels, and impairing autophagy function. Cell studies revealed that FFAs, rather than TG, induced ER stress via ATF4 activation, which, in turn, down-regulated LAMP2, thereby impairing autophagy flux. LAMP2 overexpression in the liver restored autophagy function and ameliorated alcohol-induced liver injury in mice. Reducing hepatic FFAs by peroxisome proliferator-activated receptor α activation attenuated ER stress, restored LAMP2 protein levels, and improved autophagy flux. In addition, suppression of LAMP2 and autophagy function was also detected in the liver of patients with severe alcoholic hepatitis. CONCLUSIONS: This study demonstrates that accumulation of hepatic FFAs, rather than TG, plays a crucial role in the pathogenesis of ALD by suppressing LAMP2-autophagy flux pathway through ER stress signaling, which represents an important mechanism of FFA-induced hepatocellular injury in ALD.


Assuntos
Autofagia , Estresse do Retículo Endoplasmático , Ácidos Graxos/metabolismo , Hepatopatias Alcoólicas/etiologia , Hepatopatias Alcoólicas/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/genética , Transdução de Sinais , Animais , Autofagia/genética , Biomarcadores , Diacilglicerol O-Aciltransferase/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Hepatócitos/metabolismo , Humanos , Metabolismo dos Lipídeos , Hepatopatias Alcoólicas/patologia , Testes de Função Hepática , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Camundongos , Camundongos Knockout , Modelos Biológicos
20.
Nutrients ; 13(12)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34959956

RESUMO

Hovenia dulcis, known as the oriental raisin tree, is used for food supplements and traditional medicine for the liver after alcohol-related symptoms. However, little information exists about the use of its leaves and branches. In this study, we established a method to use the leaves and branches to develop anti-hangover treatment and elucidated the underlying mechanisms. Oxidation-treated leaves (OL) exhibited high antioxidant content comparable to that of the peduncles and showed an anti-hangover effect in male mice. The branch extract (BE) was enriched in the flavonoid catechin, approximately five times more than OL extract. The mixture of OL and BE (OLB) was formulated in a 2:1 ratio with frozen-dried extract weight and was tested for anti-hangover effects and protective properties against binge alcohol-induced liver injury. OLB showed better anti-hangover effect than OL. In addition to this anti-hangover effect, OLB protected the liver from oxidative/nitrosative damage induced by binge alcohol intake.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Bebidas Alcoólicas/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Suplementos Nutricionais , Fitoterapia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Folhas de Planta/química , Caules de Planta/química , Rhamnaceae/química , Animais , Catequina/análise , Composição de Medicamentos , Masculino , Camundongos Endogâmicos ICR , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA