RESUMO
Antituberculosis drug-induced liver injury (ATDILI) has received increasing attention globally, which may limit the effectiveness of antituberculosis (anti-TB) treatment. Many host genetic determinants of ATDILI have been identified recently. As little knowledge is currently available about the association between aldehyde dehydrogenase 1 family member A1 (ALDH1A1) polymorphisms and ATDILI, the association between their variants and the susceptibility to ATDILI was investigated. A total of 747 patients with TB treated by first-line anti-TB drugs were prospectively enrolled at West China Hospital. Genomic DNA was extracted from the peripheral blood sample of each patient and seven single-nucleotide polymorphisms (SNPs) of ALDH1A1 gene were screened and genotyped with a custom-designed 2×48-plex SNP Scan TM kit. The patients were followed up monthly to monitor the development of ATDILI. The C allele and the CA genotype of rs7852860 were significantly associated with an elevated risk for ATDILI (p = .006 and 0.005, respectively), which was consistent with the results in the dominant and additive models. No allele, genotype, or genetic model of the other six SNPs (rs3764435, rs348471, rs63319, rs610529, rs7027604, rs8187876) were found to be associated with susceptibility to ATDILI. The findings first demonstrate that rs7852860 variants in ALDH1A1 gene is associated with susceptibility to ATDILI in the Chinese Han population. Validation studies with larger sample sizes and other ethnic groups are needed to confirm the findings.
Assuntos
Família Aldeído Desidrogenase 1/genética , Antituberculosos , Doença Hepática Induzida por Substâncias e Drogas , Retinal Desidrogenase/genética , Antituberculosos/efeitos adversos , Povo Asiático , Estudos de Casos e Controles , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/genética , China , Predisposição Genética para Doença , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único , Estudos ProspectivosRESUMO
Despite advances in surgical treatment techniques and chemotherapy-including anti-angiogenic and immune poly (ADP-ribose) polymerase inhibitors, the 5-year survival rate in ovarian cancer (OC) remains low. The reasons for this are the diagnosis of cancer in advanced clinical stages, chemoresistance and cancer recurrence. New therapeutic approaches are being developed, including the search for new biomarkers that are also targets for targeted therapy. The present review describes new molecular markers with relevance to targeted therapy, which to date have been studied only in experimental research. These include the angiogenic protein angiopoietin-2, the transmembrane glycoprotein ectonucleotide pyrophosphatase/phosphodiesterase 1, the adhesion protein E-cadherin, the TIMP metallopeptidase inhibitor 1 and Kruppel-like factor 7. Drugs affecting cancer stem cells (CSCs) in OC, such as metformin and salinomycin, as well as inhibitors of CSCs markers aldehyde dehydrogenase 1 (with the drug ATRA) and the transcription factor Nanog homeobox (microRNA) are also discussed. A new approach to prevention and possible therapies under investigation such as development of vaccines containing a subpopulation of CD117(+) and CD44(+) stem cells with a promising option for use in women with OC was described.
RESUMO
BACKGROUND: Aldehyde dehydrogenase 1 family member A1 (RALDH1)-producing dermal dendritic cells (DCs), a conventional DC subset regulating skin fibrosis, are decreased in the involved skin of patients with systemic sclerosis (SSc). In this study, we investigated the contribution of Fli1 deficiency, a potential predisposing factor of SSc, to the phenotypical alteration of RALDH1-producing dermal DCs by using SSc model mice and SSc skin samples. METHODS: Bleomycin (BLM)-induced skin fibrosis was generated with Fli1+/- and wild-type mice. The proportions of DC and CD4+ T cell subsets were determined by flow cytometry in the dermis of BLM-treated mice. Fli1 expression in dermal DCs was evaluated by immunofluorescence with skin samples of SSc and healthy control subjects. RESULTS: RALDH activity of dermal DCs was significantly decreased in BLM-treated Fli1+/- mice compared with BLM-treated wild-type mice, whereas the proportion of CD103-CD11b- dermal DCs, a major DC subset producing RALDH1 in response to BLM injection, was comparable between groups. Relevant to this finding, the proportion of regulatory T cells (Tregs) in the dermis was decreased in BLM-treated Fli1+/- mice relative to BLM-treated wild-type mice, while the proportions of Th1, Th2 and Th17 cells were unaltered. In the involved skin of SSc patients, Fli1 was downregulated in CD11c+ cells, including dermal DCs. CONCLUSIONS: Fli1 deficiency inhibits RALDH1 activity of CD103-CD11b- dermal DCs and related induction of Tregs in BLM-treated mice. Considering Fli1 reduction in SSc dermal DCs, Fli1deficiency may impair the dermal DC-Treg system, contributing to the development of skin fibrosis in SSc.
Assuntos
Família Aldeído Desidrogenase 1/metabolismo , Retinal Desidrogenase/metabolismo , Escleroderma Sistêmico , Linfócitos T Reguladores , Animais , Células Dendríticas , Modelos Animais de Doenças , Fibrose , Humanos , Células de Langerhans , Camundongos , Proteína Proto-Oncogênica c-fli-1/genética , Escleroderma Sistêmico/genética , Escleroderma Sistêmico/patologia , Pele/patologiaRESUMO
Currently, osimertinib (AZD9291) is the only third-generation epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor approved by the Food and Drug Administration for the treatment of non-small cell lung cancer (NSCLC) with EGFR T790M mutations. However, acquired resistance is an inevitable clinical challenge. Although placenta-specific 8 (PLAC8) has been proven to serve an important role in tumor progression and resistance, its effect in AZD9291 resistance in NSCLC remains largely unknown. The aim of the present study was to investigate the functional role of PLAC8 in AZD9291 resistance in NSCLC. The results revealed that the level of PLAC8 was significantly upregulated in AZD9291-resistant cells compared with that in parent cells. Overexpression of PLAC8 in parent cells markedly decreased drug sensitivity, and enhanced cell proliferation, colony formation and migration. Furthermore, the levels of aldehyde dehydrogenase 1 family member A1 (ALDH1A1) were observed to be upregulated in resistant cells and PLAC8-overexpressing parent cells, suggesting that ALDH1A1 may be involved in the association between the overexpression of PLAC8 and AZD9291 resistance in NSCLC. Overall, PLAC8 overexpression promoted NSCLC resistance to AZD9291, and PLAC8 may be a potential target for the reversal of AZD9291 resistance.
RESUMO
Cancer stem cells (CSCs) are a subpopulation of cancer cells responsible for tumor maintenance and relapse due to their ability to resist various anticancer effects. Owing to the resistance of CSCs to the effects of targeted therapy, an alternative strategy that targets post-translational glycosylation may be an improved approach to treat cancer as it disrupts multiple coordinated signaling that maintains the stemness of CSCs. Glucosamine acts as an anticancer agent possibly by inhibiting N-linked glycosylation. The aim of the present study was to investigate the effect of glucosamine on the stemness of breast CSCs, which is regulated by signal transducer and activator of transcription 3 (STAT3) signaling. Human aldehyde dehydrogenase-positive (ALDH+) breast CSCs and MCF7 cells were treated with various concentrations (0.25, 1 or 4 mM) of glucosamine for 24 h. Subsequently, cell viability was determined by performing a trypan blue exclusion assay, pluripotency gene [ALDH 1 family member A1 (ALDH1A1), octamer-binding transcription factor 4 (OCT-4), and Krüppel-like factor 4 (KLF4)] expression was determined using the reverse transcription-quantitative polymerase chain reaction, and STAT3 and phosphorylated STAT3 (pSTAT3) levels were determined by performing western blot analysis. Furthermore, the number of mammosphere-forming units (MFUs) in ALDH+ breast CSCs and MCF7 cells was determined. It was determined that glucosamine treatment decreased the viability of ALDH+ breast CSCs. Glucosamine treatment also decreased the stemness of ALDH+ breast CSCs and MCF7 cells, as indicated by decreased ALDH1A1, OCT-4 and KLF4 expression level, and a decreased number of MFUs. This effect of glucosamine may be associated with a decreased pSTAT3/STAT3 ratio, indicating that glucosamine inhibited STAT3 activation; therefore, the results of the present study indicated that glucosamine treatment may be an improved approach to target the stemness of CSCs.
RESUMO
Previous studies have reported the upregulation of stem cell biomarkers that are associated with tumorigenesis, in particular with cancer infiltration, recurrence and metastasis. Infection by human papilloma virus (HPV) is the main etiopathological factor of cervical carcinogenesis, but the expression of stem cell markers in cervical carcinoma and HPV infection have yet to be investigated so far. A total of 94 cases of fresh cervical tissues, 116 cases of paraffin-embedded cervical specimens and 72 cases of peripheral blood samples were collected from Uighur women who were either diagnosed with cervical squamous cell carcinoma (SCC) or cervical intraepithelial neoplasia (CIN) II-III, or from healthy subjects (negative controls, NC). HPV infection was detected in tissue DNA by polymerase chain reaction (PCR) with a HPV genotyping kit. The mRNA expression levels of aldehyde dehydrogenase 1 family member A1 (ALDH1A1), nanog homeobox (NANOG), POU class 5 homeobox 1 (OCT4), SRY-box 2 (SOX2) and twist family BHLH transcription factor 1 (Twist1) were determined using reverse transcription-quantitative PCR (RT-qPCR). Histological analysis was performed in order to examine the protein expression of ALDH1A1 and OCT4 in paraffin-embedded tissue specimens by immunohistochemical staining and the plasma levels of those two proteins was measured by ELISA. RT-qPCR analysis indicated a significant increase in the mRNA expression of ALDH1A1 and OCT4 in CIN II-III and SCC tissue specimens compared with NC (P<0.05). Although the expression levels of NANOG, SOX2 and Twist1 were significantly higher in SCC compared with NC (P<0.05), no significant difference was revealed in CIN II-III tissues compared with SCC or NC (P>0.05). Subsequent analysis by immunohistochemistry staining confirmed that the upregulation of ALDH1A1 and OCT4 was also significantly increased in SCC and CIN II-III compared with controls at the protein level. Notably, ELISA analysis detected significantly higher levels of ALDH1A1 and OCT4 in the peripheral blood (plasma) of patients with SCC compared with healthy subjects. The upregulation of stem cell markers ALDH1A1 and OCT4 in cervical carcinoma and its precursor lesions, in particular in the peripheral blood, indicates that ALDH1A1 and OCT4 may serve as biomarkers for the early detection of cervical carcinoma or for the monitoring of treatment of patients.
RESUMO
Malignant epithelial ovarian cancer (EOC) spheroids high frequently are detected in the malignant ascites of the patients with the extensive peritoneal metastasis of ovarian cancer, which represent a significant obstacle to efficacious treatment. Clinical data also suggested that EOC spheroids play a putative role in the development of chemoresistance. Since standard surgery and conventional chemotherapy is the only available treatment, there is an urgent need to identify a more effective therapeutic strategy. Recent studies demonstrated that curcumin exerts an anticancer effect in a variety of human cancers including ovarian cancer. This study evaluates anti-peritoneal metastasis and chemoresistance of curcumin related to the EOC spheroids. In this study, we confirm that the high invasive EOC cells forming the spheroids express a high level of a cancer stem cell (CSC) marker, aldehyde dehydrogenase 1 family member A1 (ALDH1A1), which was significantly down-regulated by curcumin treatment. Curcumin treatment markedly enhances the sensitivity of EOC spheroids to cisplatin in a dose-dependent manner. Our experiments provided evidence that curcumin could abolish the sphere-forming capacity of EOC cells in a dose-dependent manner. Moreover, curcumin substantially suppressed the growth of the pre-existed EOC spheroids, inhibited the adhesion of EOC spheroids to ECM as well as the invasion of EOC spheroids to the mesothelial monolayers. We propose to re-purpose curcumin as anti-metastatic and chemoresistant agent for EOC management in combination with conventional regimen. Further preclinical studies are necessary to validate the anti-cancer effect of curcumin in patients with EOC.