Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 260: 119650, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39034023

RESUMO

Nitrogen (N) source is an important factor affecting biological wastewater treatment. Although the oxygen-based membrane biofilm showed excellent greywater treatment performance, how N source impacts the synchronous removal of organics and N is still unclear. In this work, how N species (urea, nitrate and ammonia) affect synchronous metabolic pathways of organics and N were evaluated during greywater treatment in the membrane biofilm. Urea and ammonia achieved efficient chemical oxygen demand (>97.5%) and linear alkylbenzene sulfonate (LAS, >98.5%) removal, but nitrate enabled the maximum total N removal (80.8 ± 2.6%). The nitrate-added system had poor LAS removal ratio and high residual LAS, promoting the accumulation of effluent protein-like organics and fulvic acid matter. N source significantly induced bacterial community succession, and the increasing of corresponded functional flora can promote the transformation and utilization of microbial-mediated N. The nitrate system was more conducive to the accumulation of denitrification related microorganisms and enzymes, enabling the efficient N removal. Combining with high amount of ammonia monooxygenase that contributing to LAS and N co-metabolism, LAS mineralization related microbes and functional enzymes were generously accumulated in the urea and ammonia systems, which achieved the high efficiency of organics and LAS removal.


Assuntos
Ácidos Alcanossulfônicos , Biofilmes , Nitrogênio , Eliminação de Resíduos Líquidos , Biofilmes/efeitos dos fármacos , Nitrogênio/metabolismo , Eliminação de Resíduos Líquidos/métodos , Ácidos Alcanossulfônicos/metabolismo , Poluentes Químicos da Água/metabolismo , Águas Residuárias/química , Águas Residuárias/microbiologia , Redes e Vias Metabólicas , Amônia/metabolismo , Ureia/metabolismo , Purificação da Água/métodos , Reatores Biológicos/microbiologia
2.
J Environ Manage ; 342: 118344, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37320921

RESUMO

Freshwater biodiversity and ecosystem services might decline due to exposure to chemicals. However, researchers have devoted much attention to the potential risks of emerging contaminants, while placing less effort on historical pollutants, such as the surfactant, linear-alkylbenzene-sulfonate (LAS), which is a major component of widely used synthetic detergents worldwide. In this study, a multilevel risk assessment approach was used to assess risks posed by LAS to aquatic organisms, on a wide spatial scale, based on various assessment endpoints. Additionally, bottom-up approaches were used to assess contributions of LAS source discharges to aquatic environments. Concentrations of LAS in surface waters of China ranged from less than the limit of detection to 14,200 µg/L. The predicted no effect concentration (PNEC) based on adverse effects on reproduction is 15 µg/L, which is slightly less than the PNEC based on other endpoints. 99% of surface waters in Chaohu Lake and the Hai River (Ch: Haihe) were predicted to pose a risk to growth of aquatic organisms, with a protection threshold of 5% of species (HC5). Discharges of LAS were estimated using activity data and emission factors for 280 major cities in the basin. Rural domestic sources were the main source of LAS to surface waters. These outcomes provided a process for developing comprehensive management and control approaches to help researchers and policymakers effectively manage water resources affected by increasing concentrations of LAS.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Ecossistema , Lagos
3.
Molecules ; 28(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37298793

RESUMO

In order to explore the interface adsorption mechanism of hydroxyl-substituted alkylbenzene sulfonates, the interfacial tension relaxation method was used to investigate the dilational rheology properties of sodium 2-hydroxy-3-octyl-5-octylbenzene sulfonate (C8C8OHphSO3Na) and sodium 2-hydroxy-3-octyl-5-decylbenzene sulfonate (C8C10OHphSO3Na) at the gas-liquid interface and oil-water interface. The effect of the length of the hydroxyl para-alkyl chain on the interfacial behavior of the surfactant molecules was investigated, and the main controlling factors of the interfacial film properties under different conditions were obtained. The experimental results show that for the gas-liquid interface, the long-chain alkyl groups adjacent to the hydroxyl group in the hydroxyl-substituted alkylbenzene sulfonate molecules tend to extend along the interface, showing strong intermolecular interaction, which is the main reason why the dilational viscoelasticity of the surface film is higher than that of ordinary alkylbenzene sulfonates. The length of the para-alkyl chain has little effect on the viscoelastic modulus. With the increase in surfactant concentration, the adjacent alkyl chain also began to extend into the air, and the factors controlling the properties of the interfacial film changed from interfacial rearrangement to diffusion exchange. For the oil-water interface, the presence of oil molecules will hinder the interface tiling of the hydroxyl-protic alkyl, and the dilational viscoelasticity of C8C8 and C8C10 will be greatly reduced relative to the surface. The main factor controlling the properties of the interfacial film is the diffusion exchange of surfactant molecules between the bulk phase and the interface from the beginning.


Assuntos
Alcanossulfonatos , Tensoativos , Tensão Superficial , Adsorção , Reologia , Sódio , Água
4.
Inhal Toxicol ; 33(9-14): 334-346, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34890527

RESUMO

OBJECTIVE: Ethyltoluenes are isolated during crude oil refinement for use in gasoline and commercial products and are ubiquitous in the environment. However, minimal toxicity data are available. Previously, we identified 2-ethyltoluene (2-ET) as the most potent isomer via nose-only inhalation exposure in rodents. Here, we expanded the hazard characterization of 2-ET in two rodent models using whole-body inhalation exposure and evaluated the role of prenatal exposure. METHODS: Time-mated Hsd:Sprague Dawley® SD® rats were exposed to 0, 150, 300, 600, 900, or 1200 ppm 2-ET via inhalation starting on gestation day 6 until parturition. Rat offspring (n = 8/exposure/sex) were exposed to the same concentrations as the respective dams for 2 weeks after weaning. Adult male and female B6C3F1/N mice (n = 5/exposure/sex) were exposed to the same concentrations for 2 weeks. RESULTS AND DISCUSSION: Exposure to ≥600 ppm 2-ET produced acute toxicity in rats and mice characterized by large decreases in survival, body weight, adverse clinical observations, and diffuse nasal olfactory epithelium degeneration (rats) or necrosis (mice). Due to the early removal of groups ≥600 ppm, most endpoint evaluations focused on lower exposure groups. In 150 and 300 ppm exposure groups, reproductive performance and littering were not significantly changed and body weights in exposed rats and mice were 9-18% lower than controls. Atrophy of the olfactory epithelium and nerves was observed in all animals exposed to 150 and 300 ppm. These lesions were more severe in mice than in rats. CONCLUSION: Nasal lesions were observed in all animals after whole-body exposure up to 600 ppm 2-ET for 2 weeks. Future studies should focus on 2-ET metabolism and distribution to better understand species differences and refine hazard characterization of this understudied environmental contaminant.


Assuntos
Exposição por Inalação , Administração por Inalação , Animais , Feminino , Exposição por Inalação/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos , Gravidez , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley
5.
Ecotoxicology ; 30(7): 1366-1375, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33131022

RESUMO

With wide use of nanoparticles, co-exposure of aquatic organisms to nanoparticles and organic pollutants often takes place in the environment. However, the combined effects are still rarely understood. In this study, in order to study the interaction and biological effects of nanoscale zero-valent iron (nZVI) and linear alkylbenzene sulfonate (LAS), which acts as a typical surfactant, the freshwater algae Scenedesmus obliquus was exposed to nZVI and LAS individually and in combination for 96 h. According to the inhibition rate of the algae, the toxic effects were investigated by dose-response analysis. Then the combined effect of nZVI and LAS was evaluated using three evaluation models including toxicity unit (TU), additional index (AI), and mixture toxicity index (MTI). The results showed that the 96 h IC50 of nZVI and LAS to Scenedesmus obliquus was 2.464 mmol L-1 and 0.332 mmol L-1, respectively. When nZVI coexisted with LAS at toxic ratio 1:1, the 96 h IC50 value was 1.658 mmol L-1 (shown with nZVI), and the partly additive effect of nZVI mixed with LAS was confirmed. However, when the toxic ratio of nZVI:LAS was 4:1, it showed synergistic effect. In addition, when nZVI mixed with LAS at toxic ratio 1:4, the joint effect is antagonistic effect. In addition, the content of chorophyll in Scenedesmus obliquus, especially the content of chlorophyll a, was decreased with the increase of mixture dose. However, the protein levels did not show significant changes at different mixture doses.


Assuntos
Scenedesmus , Poluentes Químicos da Água , Ácidos Alcanossulfônicos , Clorofila A , Água Doce , Ferro/toxicidade , Poluentes Químicos da Água/toxicidade
6.
Bioprocess Biosyst Eng ; 44(12): 2579-2590, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34490522

RESUMO

The anionic surfactant linear alkylbenzene sulfonate (LAS) is a major chemical constituent of detergent formulation. Regarding the recalcitrant nature of sulfonoaromatic compounds, discharging these substances into wastewater collection systems is a real environmental issue. A study on LAS biodegradation based on bioelectrochemical treatment and in the form of developing a single-chamber microbial fuel cell with air cathode is reported in the present work. Pretreatment study showed LAS concentration of 60 ppm resulted in the highest anaerobic LAS removal of 57%; so, this concentration was chosen to run the MFC. After the sustained anodic biofilm was formed, LAS degradation rate during 4 days in MFC was roughly 76% higher than that in the serum bottle, which indicated the role of the bioelectrochemical process in improving anaerobic LAS removal. Additionally, through 16S rRNA gene sequencing, the dominant bacterial species in the biofilm was identified as Pseudomonas zhaodongensis NEAU-ST5-21(T) with about 98.9% phylogenetic similarity and then a pathway was proposed for LAS anaerobic biodegradation. The MFC characteristics were assessed by pH monitoring as well as scanning electron microscopy and current density evolution.


Assuntos
Ácidos Alcanossulfônicos/metabolismo , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Biodegradação Ambiental , Tensoativos/metabolismo , Poluentes Químicos da Água/metabolismo
7.
Environ Res ; 191: 110124, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32835683

RESUMO

Grey water (GW) containing high levels of linear alkylbenzene sulfonates (LAS) can be a threat to human health and organisms in the environment if not treated properly. Although aerobic treatment could achieve high organics removal efficiency, conventional aeration can lead to serious foaming and energy waste. Here, we systematically evaluated an oxygen based membrane biofilm reactor (O2-MBfR) for its capacity to simultaneously remove organics and nitrogen from GW. The dissolved oxygen (DO) concentration inside the reactor was maintained at 0.4 mg/L by gradually controlling the lumen air pressure. Results showed that the O2-MBfR achieved high removal efficiency of total chemical oxygen demand (TCOD), total linear alkylbenzene sulfonates (LAS) and total nitrogen (TN) of 89.7%, 99.1% and 78.1%, respectively, with a hydraulic retention time (HRT) of 7.5 h. Lower HRT (7.0 h) led to the accumulation of LAS in the biofilm, which caused cell lysis and damaged the O2-MBfR system, leading to a discernible and continuous decline of the reactor performance. The O2-MBfR design completely eliminated foaming formation and the three-dimension oxygen gradient design led to low air pressure inside the membrane fiber, which enabled the high removal efficiency for both organics and nitrogen with low energy input and GW treatment cost, providing the fundamental knowledge for practical application of O2-MBfR in wastewater treatment.


Assuntos
Oxigênio , Purificação da Água , Biofilmes , Reatores Biológicos , Humanos , Nitrogênio , Eliminação de Resíduos Líquidos , Águas Residuárias
8.
Biodegradation ; 31(1-2): 73-89, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32266640

RESUMO

A large-scale (19.8L) Fluidized Bed Reactor (FBR) operated for 592 days was used to assess the removal performance of linear alkylbenzene sulfonate (LAS). Adjustments in hydraulic retention time (HRT) (18 and 30 h), ethanol (50, 100, 200 mg L-1) and linear alkylbenzene sulfonate (LAS) concentration (6.3-24.7 mg L-1) with taxonomic and functional characterization of biomass using Whole Genome Shotgun Metagenomic (WGSM) represented a major step forward for optimizing biological treatments of LAS. In addition, the variation of the upflow velocity (0.5, 0.7 and 0.9 cm s-1) was investigated, which is a parameter that had not yet been correlated with the possibilities of LAS removal in FBR. Lower Vup (0.5 cm s-1) allied to higher ethanol concentration (200 mg L-1) resulted in lower LAS removal (29%) with predominance of methanogenic archaea and genes related to methanogenesis, while higher Vup (0.9 cm s-1) led to aerobic organisms and oxidative phosphorylation genes. An intermediate Vup (0.7 cm s-1) and higher HRT (30 h) favored sulfate reducing bacteria and genes related to sulfur metabolism, which resulted in the highest LAS (83%) and COD (77%) removal efficiency.


Assuntos
Esgotos , Águas Residuárias , Biodegradação Ambiental , Biomassa , Reatores Biológicos , Eliminação de Resíduos Líquidos
9.
Ecotoxicol Environ Saf ; 200: 110747, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32460052

RESUMO

The presence of surfactants may affect the bioavailability of polycyclic aromatic hydrocarbons. A hydroponic experiment was conducted to investigate the response of Hydrocharis dubia (Bl.) Backer to different concentrations of linear alkylbenzene sulfonate (LAS), naphthalene (NAP) and their mixture (0.5, 5, 10, and 20 mg/L) for 14 days and 28 days. The results showed that LAS had a greater toxic effect on H. dubia growth than NAP at treatment concentrations of 0.5-20 mg/L. The combined effect of LAS and NAP was damaging to H. dubia at concentrations of LAS + NAP ≥5 + 5 mg/L. When LAS + NAP ≥10 + 10 mg/L, the underground parts of H. dubia suffered more significant damage than the aboveground parts. Under the treatments with LAS, NAP and their mixture, H. dubia experienced oxidative stress. Soluble proteins and antioxidant enzymes were the main substances protecting H. dubia from LAS stress, and superoxide dismutase (SOD) and peroxidase (POD) were the main protective enzymes. When exposed to NAP, H. dubia growth was stimulated and promoted at the same time. In the short-term treatment (14 d), catalase (CAT) activity was sensitive to NAP stimulation, and soluble proteins and SOD were the main protective substances produced. Soluble sugars, SOD and ascorbate peroxidase (APX) played important protective roles during the longer exposure time (28 d). The physiological response of H. dubia exposed to the combined toxicants was weaker than the response to exposure to individual toxicants. The responses of SOD and CAT activity were positive in the short term (14 d), and these were the main protective enzymes. As the exposure time increased (28 d), the plant antioxidant system responded negatively.


Assuntos
Ácidos Alcanossulfônicos/toxicidade , Hydrocharitaceae/efeitos dos fármacos , Naftalenos/toxicidade , Tensoativos/toxicidade , Ácidos Alcanossulfônicos/antagonistas & inibidores , Antioxidantes/metabolismo , Ascorbato Peroxidases/metabolismo , Catalase/metabolismo , Sinergismo Farmacológico , Hydrocharitaceae/enzimologia , Hydrocharitaceae/metabolismo , Naftalenos/antagonistas & inibidores , Estresse Oxidativo/efeitos dos fármacos , Peroxidase/metabolismo , Superóxido Dismutase/metabolismo
10.
Int J Syst Evol Microbiol ; 69(4): 982-997, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30762514

RESUMO

Comparative 16S rRNA gene sequence analysis and major physiological differences indicate two distinct sublineages within the genus Azoarcus: the Azoarcus evansii lineage, comprising Azoarcusevansii (type strain KB740T=DSM 6898T=CIP 109473T=NBRC 107771T), Azoarcusbuckelii (type strain U120T=DSM 14744T=LMG 26916T), Azoarcusanaerobius (type strain LuFRes1T=DSM 12081T=LMG 30943T), Azoarcustolulyticus (type strain Tol-4T=ATCC 51758T=CIP 109470T), Azoarcustoluvorans (type strain Td21T=ATCC 700604T=DSM 15124T) and Azoarcustoluclasticus (type strain MF63T=ATCC 700605T), and the Azoarcus indigens lineage, comprising Azoarcusindigens (type strain VB32T=ATCC 51398T=LMG 9092T), Azoarcus communis (type strain SWub3T=ATCC 51397T=LMG 9095T) and Azoarcusolearius (type strain DQS-4T=BCRC 80407T=KCTC 23918T=LMG 26893T). Az. evansii lineage members have remarkable anaerobic degradation capacities encompassing a multitude of alkylbenzenes, aromatic compounds and monoterpenes, often involving novel biochemical reactions. In contrast, Az. indigens lineage members are diazotrophic endophytes lacking these catabolic capacities. It is proposed that species of the Az. evansii lineage should be classified in a novel genus, Aromatoleum gen. nov. Finally, based on the literature and new growth, DNA-DNA hybridization and proteomic data, the following five new species are proposed: Aromatoleum aromaticum sp. nov. (type strain EbN1T=DSM 19018T=LMG 30748T and strain pCyN1=DSM 19016=LMG 31004), Aromatoleum petrolei sp. nov. (type strain ToN1T=DSM 19019T=LMG 30746T), Aromatoleumbremense sp. nov. (type strain PbN1T=DSM 19017T=LMG 31005T), Aromatoleum toluolicum sp. nov. (type strain TT=DSM 19020T=LMG 30751T) and Aromatoleum diolicum sp. nov. (type strain 22LinT=DSM 15408T=LMG 30750T).


Assuntos
Filogenia , Rhodocyclaceae/classificação , Azoarcus , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Hibridização de Ácido Nucleico , Proteômica , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
11.
J Environ Manage ; 251: 109495, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31539699

RESUMO

In this study, the removal of anionic surfactant Linear Alkylbenzene Sulfonate (LAS) from laundry wastewater was evaluated in co-digestion with domestic sewage, using a pilot-scale Expanded Granular Sludge Bed reactor. Surfactant influent concentration was enhanced from 5 ±â€¯3 mg LAS L-1 (stage I) to 19 ±â€¯10 mg LAS L-1 (stage II) and 36 ±â€¯19 mg LAS L-1 (stage III) throughout reactor operation. Sulfide levels higher than 20 mg L-1 influenced LAS removal efficiency, which decreased from 71% to 55% and 32% in stage I, II and III, respectively. Acclimation of microbial population was verified and higher relative abundance of the genera similar to Cytophaga, Bacteroides, Syntrophus and Syntrophobacter in the early stages (adaptation and stage I) was replaced by higher relative abundance of the genera Anaerophaga, Nitrosovibrio, Sulfurovum and Desulfovibrio in the last stages (stage II and III).


Assuntos
Microbiota , Esgotos , Anaerobiose , Reatores Biológicos , Sulfetos , Águas Residuárias
12.
J Environ Manage ; 206: 357-363, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29101877

RESUMO

The aim of this work was to assess for the first time the use of two high-charge swelling micas (Na-Mica-4 and C18-Mica-4) for the removal of four linear alkylbenzene sulfonates (LAS) from aqueous samples. To this end, Na-Mica-4 was synthesized and organically functionalized with cations of octadecylamine to obtain C18-Mica-4. Na-Mica-4 and C18-Mica-4 were characterized by X-Ray diffraction, Zeta potential, specific surface area and thermogravimetric analysis before and after the adsorption experiments. LAS removal studies were carried out in water samples spiked with a LAS mixture (10 mg L-1). Removal rates with C18-Mica-4 were between 94% and 97% at pH = 2, and between 98% and 99% at pH = 5 after 1 h. For the same amount of Na-Mica-4, removal rates were between 54% and 81% at pH = 2, and between 24% and 66% at pH = 5 after seven days. No significant effects on the removal rates of C18-Mica-4 were observed for pH values between 0.5 and 9. The experimental equilibrium data were fitted to 30 min, with removal rates of up to 98% in all the experiments. C18-Mica-4 characterization tests indicate that LAS adsorption occurs in the interlayer space. Finally, C18-Mica-4 was applied successfully to the removal of the target compounds from influent and effluent wastewater, surface water and tap water samples.


Assuntos
Tensoativos , Poluentes Químicos da Água , Adsorção , Águas Residuárias , Água , Purificação da Água
13.
J Sep Sci ; 40(5): 1133-1141, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28035794

RESUMO

Novel ionic-liquid-functionalized Fe3 O4 magnetic nanoparticles were synthesized by the thiol-ene click reaction. The prepared functionalized Fe3 O4 nanoparticles possessed multiple interactions, such as electrostatic, hydrophobic, and π-π interactions. The functionalized Fe3 O4 nanoparticles were characterized by using Fourier transform infrared spectroscopy, X-ray diffraction, vibrating sample magnetometry, and transmission electron microscopy. Four kinds of linear alkylbenzene sulfonates, namely, sodium decylbenzenesulfonate, sodium undecylbenzene sulfonate, sodium dodecylbenzenesulfonate, and sodium tridecylbenzenesulfonate, were selected as model compounds to evaluate the applicability of adsorbents for extraction and subjected to high-performance liquid chromatography analysis. In addition, the effects of various parameters, such as sorbent amount, pH value, ionic strength, sample volume, extraction time, and elution conditions on extraction efficiency were studied in detail. Under the optimum conditions, good linearities were attained, with correlation coefficients between 0.9912 and 0.9968. The proposed method exhibited limits of detection ranging from 0.061 to 0.099 µg/L for all the target analytes. The spiked recoveries of the target analytes in real water samples ranged from 86.3 to 107.5%, with relative standard deviations lower than 7.96%. The enrichment factors of the analytes ranged from 364 to 391, indicating that the obtained functionalized Fe3 O4 nanoparticles can effectively extract trace target analytes from environmental water samples.

14.
Inhal Toxicol ; 29(12-14): 577-585, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29374990

RESUMO

The C9 alkylbenzenes, composed mostly of ethyltoluenes and trimethylbenzenes, comprise 75-90% of the naphtha fraction of crude oil. Occupational and environmental exposure to C9 alkylbenzenes occur via inhalation. We conducted short-term inhalation studies on the ethyltoluene isomers (2-, 3- or 4-) to select one isomer for more comprehensive studies. Male Hsd:Sprague Dawley rats and female B6C3F1/N mice (n = 10) were exposed by nose-only inhalation to 2-, 3- or 4-ethyltoluene (0, 1000 or 2000 ppm) or cumene (a reference compound: 0, 500 or 1000 ppm) 3 h/day, 5 days/week, for 2 weeks. Clinical observations included abnormal gait and delayed righting reflex. Rats and mice exposed to 2000 ppm 2-ethyltoluene and mice exposed to 2000 ppm 4-ethyltoluene were euthanized early in moribund condition; no exposure-related deaths were observed with 3-ethyltoluene or cumene. Histopathology of selected tissues revealed that the nose and liver (rats and mice) and lung (mice only) to be toxicity targets. In the mouse lung, all compounds except 4-ethyltoluene produced bronchial and bronchiolar hyperplasia. In rats and mice, 2-ethyltoluene was the only compound to produce lesions in the nose and liver: in mice, squamous metaplasia and neutrophilic inflammation of the respiratory epithelium and atrophy and degeneration of the olfactory epithelium were observed in the nose and centrilobular hypertrophy and necrosis were observed in the liver. In rats, 2-ethyltoluene exposure produced atrophy of the olfactory epithelium in the nose and centrilobular necrosis in the liver. Based on mortality, body weight effects and histopathology, the 2-ethyltoluene isomer was the most potent isomer.


Assuntos
Exposição por Inalação/efeitos adversos , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/patologia , Tolueno/análogos & derivados , Animais , Feminino , Fígado/efeitos dos fármacos , Fígado/patologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley , Estereoisomerismo , Tolueno/administração & dosagem , Tolueno/toxicidade
15.
Environ Toxicol ; 32(1): 122-130, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26589110

RESUMO

Linear alkylbenzene sulfonate (LAS) is an anionic surfactant commonly used in cleaning agents such as laundry detergents. Trace amounts of LAS are released into environmental waters after processing in wastewater treatment plants after the use of this chemical. Acute toxicity of LAS has been well-studied using various organisms, and its effects are particularly well known in fish. LAS damages fish gill morphology and induces mucous excretion from these organs. LAS also causes hematological changes. These observations suggest that LAS might induce hypoxic conditions in fish. However, the connections between hypoxia and hematological changes at the cellular and molecular levels remain unknown. Common carp were exposed to LAS at concentrations of 625, 1250, and 2500 µg/L for 96 h. A total of 9-10 fish were sampled at the end of the exposure period for each concentration. For hematological analysis, carp blood was sampled from the caudal vein. Gill tissue was used for real-time PCR analysis to evaluate transcriptional changes of hypoxia-induced genes. The number of normal red blood cells and the number of immature red blood cells were significantly decreased and increased, respectively, in fish exposed to 2500 µg/L LAS. The hypoxic marker genes hypoxia inducible factor 1α, myoglobin 1, and erythropoietin 2 were upregulated in these fish. Our results suggest that LAS decreases erythrocyte numbers and induces hypoxic conditions. In addition, LAS-exposed fish increase production of immature erythrocytes and upregulate myoglobin expression in gills to improve oxygen transport and absorption. © 2015 Wiley Periodicals, Inc. Environ Toxicol 32: 122-130, 2017.


Assuntos
Ácidos Alcanossulfônicos/toxicidade , Hipóxia/induzido quimicamente , Tensoativos/toxicidade , Animais , Contagem de Células Sanguíneas , Peso Corporal/efeitos dos fármacos , Carpas , Relação Dose-Resposta a Droga , Contagem de Eritrócitos , Eritropoetina/metabolismo , Expressão Gênica/efeitos dos fármacos , Brânquias/patologia , Crescimento/efeitos dos fármacos , Hipóxia/genética , Hipóxia/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Mioglobina/metabolismo
16.
J Environ Manage ; 198(Pt 1): 43-49, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28448845

RESUMO

Linear alkylbenzene sulfonates (LAS) are synthetic anionic surfactants that are extensively used in many industries. As a result, large volumes of effluents containing high levels of these compounds are discharged into water bodies, causing risks to aquatic flora and fauna. Then, there is a need for environmentally safe and economically viable technologies for the removal of LAS from aqueous matrices. The present work evaluates the use of aqueous two-phase systems (ATPS) composed of PEG and sulfate salts for this purpose, considering the effects of tie line length (TLL), molar mass of polymer, and type of cation-forming salt on the partitioning behavior of LAS. All the LAS partition coefficient (KLAS) values were greater than unity, and the LAS extraction efficiencies (%ELAS) were higher than 97%. The system consisting of PEG 1500 + (NH4)2SO4 + H2O provided the highest KLAS (1083.34) and %ELAS (99.9%), indicating that the method provided good extraction of LAS to the top phase. This system was applied using a real effluent sample in laboratory-scale experiments as well as in bench-scale batch trials. The results obtained at the laboratory scale showed %ELAS values greater than 98%, while the best KLAS value obtained in the batch experiments was 8.50 (±1.75) (%ELAS = 78.17%). These values demonstrated the potential of ATPS for the removal of LAS from industrial effluents.


Assuntos
Derivados de Benzeno , Tensoativos , Poluentes Químicos da Água , Polietilenoglicóis , Polímeros , Cloreto de Sódio , Água
17.
J Environ Manage ; 193: 312-317, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28235730

RESUMO

In this study, performance of Integrated Fixed-film Activated Sludge (IFAS) system in treatment of Linear Alkylbenzene Sulfonate (LAS), and oil & grease in synthetic greywater and effect of Organic Loading Rates (OLRs) on removal efficiency within a period of 105 days were investigated. Present study was carried out in a pilot scale under such conditions as temperature of 30 ± 1 °C, dissolved oxygen of 2.32 ± 0.91 mg/l, pH of 8.01 ± 0.95 and OLRs of 0.11-1.3gCOD/L.d. Also, Scanning Electron Microscopy (SEM) images were employed to specify rate of the biofilm formed on the media inside the reactor IFAS. The best removal efficiency for COD, LAS and oil and grease were respectively obtained as 92.52%, 94.24% and 90.07% in OLR 0.44gCOD/L.d. The assessment of loading rate indicated that with increased OLR to 0.44gCOD/L.d, removal efficiency of COD, oil and grease was increased while with increased OLR, removal efficiency was decreased. In doing so, based on the statistical test ANOVA, such a difference between removal efficiencies in diverse OLRs was significant for COD (p = 0.003), oil and grease (p = 0.01). However, in terms of LAS, with increased value of OLR to 0.44gCOD/L.d, the removal efficiency was increased and then with higher OLRs, removal efficiency was slightly decreased that is insignificant (p = 0.35) based on the statistical test ANOVA. The SEM images also showed that the biofilm formed on the media inside IFAS reactor plays a considerable role in adsorption and biodegradation of LAS, and oil & grease in greywater. The linear relation between inlet COD values and rate of removed LAS indicated that the ratio of inlet COD (mg/L) to removed LAS (mg/L) was 0.4. Therefore, use of IFAS system for biodegradation of LAS, oil and grease in greywater can be an applicable option.


Assuntos
Benzeno , Esgotos , Biodegradação Ambiental , Biofilmes , Reatores Biológicos , Oxigênio , Eliminação de Resíduos Líquidos
18.
J Environ Manage ; 183(Pt 3): 687-693, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27639303

RESUMO

The objective of this study was to evaluate the removal of linear alkylbenzene sulfonate (LAS) associated with Fe(III) supplementation using an expanded granular sludge bed (EGSB) reactor. The reactor was inoculated with a granular sludge and fed with synthetic wastewater containing a specific LAS load rate (SLLR) of 1.5 mg gVS-1 d-1 (∼16.4 mgLAS L-1 influent) and supplied with 7276 µMol L-1 of Fe(III). The biomasses from the inoculum and at the end of the EGSB-Fe operation (127 days) were characterized using 16S rRNA Ion Tag sequencing. An increase of 20% in the removal efficiency was observed compared to reactors without Fe(III) supplementation that was reported in the literature, and the LAS removal was approximately 84%. The Fe(III) reduction was dissimilatory (the total iron concentration in the influent and effluent were similar) and reached approximately 64%. The higher Fe(III) reduction and LAS removal were corroborated by the enrichment of genera, such as Shewanella (only EGSB-Fe - 0.5%) and Geobacter (1% - inoculum; 18% - EGSB-Fe). Furthermore, the enrichment of genera that degrade LAS and/or aromatic compounds (3.8% - inoculum; 29.6% - EGSB-Fe of relative abundance) was observed for a total of 20 different genera.


Assuntos
Ácidos Alcanossulfônicos/isolamento & purificação , Reatores Biológicos/microbiologia , Consórcios Microbianos , Tensoativos/isolamento & purificação , Eliminação de Resíduos Líquidos/métodos , Ácidos Alcanossulfônicos/química , Ácidos Alcanossulfônicos/metabolismo , Anaerobiose , Biomassa , Geobacter/genética , Geobacter/metabolismo , Ferro/química , Consórcios Microbianos/genética , RNA Ribossômico 16S/genética , Esgotos , Shewanella/genética , Shewanella/metabolismo , Tensoativos/metabolismo , Eliminação de Resíduos Líquidos/instrumentação , Águas Residuárias/química
19.
Artigo em Inglês | MEDLINE | ID: mdl-26654204

RESUMO

This article reports on the ability of yeast Trichosporon asahii B1 biofilm-associated cells, compared with that of planktonic cells, to transform sec-hexylbenzene and its metabolites. This B1 strain was isolated from a petroleum-polluted sediment collected in the QuangNinh coastal zones in Vietnam, and it can transform the branched aromatic hydrocarbons into a type of forming biofilm (pellicle) more efficiency than that the planktonic forms can. In the biofilm cultivation, seven metabolites, including acetophenone, benzoic acid, 2,3-dihydroxybenzoic acid, ß-methylcinnamic acid, 2-phenylpropionic acid, 3-phenylbutyric acid, and 5-phenylhexanoic acid were extracted by ethyl acetate and analyzed by HPLC and GC-MS. In contrast, in the planktonic cultivation, only three of these intermediates were found. An individual metabolite was independently used as an initial substrate to prove its degradation by biofilm and planktonic types. The degradation of these products indicated that their inoculation with B1 biofilms was indeed higher than that observed in their inoculation with B1 planktonic cells. This is the first report on the degradation of sec-hexylbenzene and its metabolites by a biofilm-forming Trichosporon asahii strain. These results enhance our understanding of the degradation of branched-side-chain alkylbenzenes by T. asahii B1 biofilms and give a new insight into the potential role of biofilms formed by such species in the bioremediation of other recalcitrant aromatic compounds.


Assuntos
Sedimentos Geológicos/microbiologia , Hidrocarbonetos Aromáticos/metabolismo , Trichosporon/isolamento & purificação , Trichosporon/metabolismo , Biodegradação Ambiental , Biofilmes , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos Aromáticos/química , Poluição por Petróleo , Trichosporon/classificação , Trichosporon/genética , Vietnã
20.
Bioprocess Biosyst Eng ; 38(10): 1835-44, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26084256

RESUMO

The efficiency of linear alkylbenzene sulfonate (LAS) removal from laundry wastewater and the related microbial community was investigated in an anaerobic fluidized bed reactor (AFBR). The AFBR was operated in three stages, in addition to the biomass adaptation stage without LAS (stage I). The stages were differentiated by their supplementary co-substrates: stage II had sucrose plus ethanol, stage III had only ethanol, and stage IV had no co-substrate. The replacement of sucrose plus ethanol with ethanol only for the substrate composition favored the efficiency of LAS removal, which remained high after the co-substrate was removed (stage II: 52 %; stage III: 73 %; stage IV: 77 %). A transition in the microbial community from Comamonadaceae to Rhodocyclaceae in conjunction with the co-substrate variation was observed using ion sequencing analysis. The microbial community that developed in response to an ethanol-only co-substrate improved LAS degradation more than the community that developed in response to a mixture of sucrose and ethanol, suggesting that ethanol is a better option for enriching an LAS-degrading microbial community.


Assuntos
Bactérias/metabolismo , Etanol/metabolismo , Consórcios Microbianos/fisiologia , Sacarose/metabolismo , Tensoativos/metabolismo , Poluentes Químicos da Água/metabolismo , Ácidos Alcanossulfônicos/isolamento & purificação , Ácidos Alcanossulfônicos/metabolismo , Ânions , Bactérias/classificação , Bactérias/isolamento & purificação , Biodegradação Ambiental , Reatores Biológicos/microbiologia , Especificidade da Espécie , Tensoativos/isolamento & purificação , Microbiologia da Água , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA